Cyclic codes over $$M_4 (\mathbb {F}_2+u\mathbb {F}_2)$$
Tóm tắt
Let p be a prime and
$$\mathbb {F}_q$$
be a finite field for
$$q=p^m$$
. In this paper, we consider the ring
$$R=M_4 (\mathbb {F}_2+u\mathbb {F}_2 )$$
of
$$4\times 4$$
matrices over the finite ring
$$\mathbb {F}_2+u \mathbb {F}_2$$
with
$$u^2=0$$
. Then R is a noncommutative non-chain ring of cardinality
$$4^{16}$$
and isomorphic to the ring
$$\mathbb {F}_{16}+v \mathbb {F}_{16}+v^2 \mathbb {F}_{16}+v^3 \mathbb {F}_{16}+u \mathbb {F}_{16}+uv\mathbb {F}_{16}+uv^2 \mathbb {F}_{16}+uv^3 \mathbb {F}_{16},$$
where
$$v^4=0$$
,
$$uv=vu$$
,
$$uv^2=v^2 u$$
and
$$uv^3=v^3 u$$
. Here, first we establish the structure of cyclic codes and their generators over R and later the dual (Euclidean and Hermitian both) of these cyclic codes are discussed. Further, with the help of the Gray map, we show that the image of a cyclic code is an
$$\mathbb {F}_{16}$$
-linear code. Finally, we provide some non-trivial examples of linear codes with good parameters to support our derived results.
Tài liệu tham khảo
Abualrub, T., Siap, I.: Cyclic codes over the ring \(\mathbb{Z}_2+u\mathbb{Z}_2\) and \(\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2\). Des. Codes Cryptogr. 42(3), 273–287 (2007)
Alahmadi, A., Sboui, H., Solé, P., Yemen, O.: Cyclic codes over \(M_2(\mathbb{F}_2)\). J. Franklin Inst. 350(9), 2837–2847 (2013)
Bachoc, C.: Applications of coding theory to the construction of modular lattices. J. Combin. Theory Ser. A 78(1), 92–119 (1997)
Bhowmick, S., Bagchi S., Bandi, R. K.: Self-dual cyclic codes over \(M _2 (Z_ 4 )\). arXiv:1807.04913 (2018)
Bonnecaze, A., Udaya, P.: Cyclic codes and self-dual codes over \(\mathbb{F}_2 + u\mathbb{F}_2\). IEEE Trans. Inform. Theory 45(4), 1250–1255 (1999)
Bosma, W., Cannon, J.: Handbook of Magma Functions. Univ. of Sydney, Sydney (1995)
Falcunit, D. F., Sison, V. P.: Cyclic codes over matrix ring \(M_2(\mathbb{F}_p)\) and their isometric images over \(\mathbb{F} _{p^2}+u\mathbb{F}_{p^2}\). International Zurich Seminar on Communications (IZS), 26–28 (2014)
Greferath, M., Schmidt, S. E.: Linear codes and rings of matrices. Proceeding of AAECC-13 Hawaii, Springer LNCS , vol. 1719, 160–169 (1999)
Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)
Islam, H., Prakash, O., Bhunia, D.K.: On the structure of cyclic codes over \(M_2(\mathbb{F}_p+u\mathbb{F}_p)\). Indian J. Pure Appl. Math. 53(1), 153–161 (2022)
Luo, R., Udaya, P.: Cyclic codes over \(M_2(\mathbb{F}_2+u\mathbb{F}_2)\). Cryptogr. Commun. 10(6), 1109–1117 (2018)
Oggier, F., Solé, P., Belfiore, J.C.: Codes over matrix rings for space-time coded modulations. IEEE Trans. Inform. Theory 58(2), 734–746 (2012)
Pal, J., Bhowmick, S., Bagchi, S.: Cyclic codes over \(M _4 (\mathbb{F}_ 2)\). J. Appl. Math. Comput. 60(1–2), 749–756 (2019)
Wisbauer, R.: Foundations of module and ring theory. Gordon and Breach Science Publishers (1991)
Wood, J.: Duality for modules over finite rings and applications to coding theory. Amer. J. Math. 121(3), 555–575 (1999)