Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules

Applied Thermal Engineering - Tập 93 - Trang 1061-1073 - 2016
Ming Wu1, Chao Xu2, Ya‐Ling He1
1State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
2Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of MOE, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wu, 2014, The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium, Appl. Energ, 113, 1363, 10.1016/j.apenergy.2013.08.044

Xu, 2012, Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system, Appl. Energ, 92, 65, 10.1016/j.apenergy.2011.11.002

Xu, 2012, Parametric study and standby behavior of a packed-bed molten salt thermocline thermal storage system, Renew. Energ, 48, 1, 10.1016/j.renene.2012.04.017

Xu, 2013, Effects of solid particle properties on the thermal performance of a packed-bed molten-salt thermocline thermal storage system, Appl. Therm. Eng, 57, 69, 10.1016/j.applthermaleng.2013.03.052

Pacheco, 2001, Development of a molten-salt thermocline thermal storage system for parabolic trough plants, Proc. of Solar Forum, 2001

Valmiki, 2012, Experimental investigation of thermal storage processes in a thermocline tank, J. Sol. Energy Eng, 134, 10.1115/1.4006962

Yang, 2010, Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions, Appl. Energ, 87, 3322, 10.1016/j.apenergy.2010.04.024

Yang, 2013, Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants, Appl. Energ, 103, 256, 10.1016/j.apenergy.2012.09.043

Li, 2011, Generalized charts of energy storage effectiveness for thermocline heat storage tank design and calibration,” Sol, Energy, 85, 2130

Flueckiger, 2014, System-level simulation of a solar power tower plant with thermocline thermal energy storage, Appl. Energ, 113, 86, 10.1016/j.apenergy.2013.07.004

Arkar, 2007, Free cooling of a building using PCM heat storage integrated into the ventilation system, Sol. Energy, 81, 1078, 10.1016/j.solener.2007.01.010

Nallusamy, 2007, Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources, Renew. Energ, 32, 1206, 10.1016/j.renene.2006.04.015

Bédécarrats, 2009, Study of a phase change energy storage using spherical capsules. Part I: experimental results, Energ. Convers. Manage, 50, 2527, 10.1016/j.enconman.2009.06.004

Bédécarrats, 2009, Study of a phase change energy storage using spherical capsules. Part II: numerical modeling, Energ. Convers. Manage, 50, 2537, 10.1016/j.enconman.2009.06.003

Amin, 2014, An effectiveness-NTU model of a packed bed PCM thermal storage system, Appl. Energ, 134, 356, 10.1016/j.apenergy.2014.08.020

Regin, 2009, An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: numerical investigation, Renew. Energ, 34, 1765, 10.1016/j.renene.2008.12.012

Xia, 2010, Numerical heat transfer analysis of the packed-bed latent heat storage system based on an effective packed-bed model, Energy, 35, 2022, 10.1016/j.energy.2010.01.018

Oró, 2013, Comparative study of different numerical models of packed bed thermal energy storage system, Appl. Therm. Eng, 50, 384, 10.1016/j.applthermaleng.2012.07.020

Nithyanandam, 2012

Nithyanandam, 2014, Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power, Appl. Energ, 113, 1446, 10.1016/j.apenergy.2013.08.053

Nithyanandam, 2014, Optimization of an encapsulated phase change material thermal energy storage system, Sol, Energy, 107, 770

Galione, 2014, A new thermocline-PCM thermal storage concept for CSP plants. Numerical analysis and perspectives, Energy Procedia, 49, 790, 10.1016/j.egypro.2014.03.086

Tumilowicz, 2014, An enthalpy formulation for thermocline with encapsulated PCM thermal storage and benchmark solution using the method of characteristics, Int. J. Heat Mass Transf, 79, 362, 10.1016/j.ijheatmasstransfer.2014.08.017

Flueckiger, 2014, Latent heat augmentation of thermocline energy storage for concentrating solar power-A system-level assessment, Appl. Energ, 116, 278, 10.1016/j.apenergy.2013.11.059

Bellan, 2014, Numerical analysis of charging and discharging performance of a thermal energy storage system with encapsulated phase change material, Appl. Therm. Eng, 71, 481, 10.1016/j.applthermaleng.2014.07.009

Wu, 2014, Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules, Appl. Energ, 121, 184, 10.1016/j.apenergy.2014.01.085

Peng, 2014, Thermal investigation of PCM-based high temperature thermal energy storage in packed bed, Energ. Convers. Manage, 81, 420, 10.1016/j.enconman.2014.02.052

Kenisarin, 2010, High-temperature phase change materials for thermal energy storage, Renew. Sustain. Energy Rev, 14, 955, 10.1016/j.rser.2009.11.011

Galione, 2011

Cao, 1990, A numerical analysis of phase-change problems including natural convection, J. Heat Transfer, 112, 81, 10.1115/1.2910466