Cyclic Voltammetry is Invasive on Microbial Electrosynthesis

ChemElectroChem - Tập 8 Số 17 - Trang 3384-3396 - 2021
Sanne M. de Smit1,2, Cees J.N. Buisman2, Johannes H. Bitter1, David P. B. T. B. Strik2
1Biobased Chemistry and Technology, Wageningen University and Research Axis-Z, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
2Environmental Technology, Wageningen University and Research Axis-Z, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands

Tóm tắt

AbstractCyclic voltammetry (CV) is expected to cause changes in the biocathode composition, especially when using low scan rates. A recent finding stated that CV triggered further biocatalytic activity in microbial electrosynthesis systems (MES), leading to the aim of our study: to investigate the invasiveness of CV on MES. The present study confirms that a CO2 elongation MES biocathode composition changes during and right after the CV. Oxidation peaks differ over repeated CV‐cycles while metal compounds and biomass were released in the biocatholyte. After CV, the current increased temporarily for up to 20 days and the metal compounds decreased from the biocatholyte solution. Further, the sole short application of open cell voltage was shown to shortly increase the current. Evidently CV affects the studied biocathode, which complicates the use of CV as an analysis technique in MESs. However, the positive effect CV has on biocathode current density may provide methods to boost reactor performance and maintain productivity.

Từ khóa


Tài liệu tham khảo

10.1038/nrmicro2422

 

10.3389/fmicb.2019.01747

10.1016/j.electacta.2016.09.063

10.3389/fenrg.2018.00007

10.1021/acssuschemeng.8b00739

10.1016/j.bioelechem.2018.04.019

10.1128/AEM.02401-12

10.1016/j.copbio.2016.09.004

10.1021/acs.accounts.9b00523

10.1016/j.jcou.2017.04.014

10.1002/celc.201600587

10.1021/acs.jchemed.7b00361

 

10.1021/ac60230a016

10.1021/ac9711807

Rountree E. S., 2014, ACS Publications, 53, 9983

 

10.1016/S0022-0728(72)80445-5

10.1016/S0378-7753(01)00921-1

 

10.1016/S0013-4686(02)00161-5

10.1023/A:1003472901760

10.1016/j.electacta.2008.12.016

10.1149/1.2086681

Harnisch F., 2012, Chemistry, 7, 466

 

10.1002/bit.21821

10.1103/PhysRevApplied.12.014018

Mao Z., 2020, Int. J. Hydrogen Energy, 46, 3045, 10.1016/j.ijhydene.2020.02.002

10.1016/j.electacta.2016.07.100

 

10.1128/AEM.70.9.5373-5382.2004

10.1006/anae.2001.0399

10.1016/S0141-0229(01)00478-1

10.1002/elan.200800007

10.1128/AEM.00431-13

10.1042/BST20120115

10.1039/b802363h

10.1016/j.jiec.2011.10.002

 

10.1128/AEM.00177-08

10.1002/jctb.6347

10.1021/acs.est.8b07256

 

10.1016/j.electacta.2004.05.028

10.1149/2.0591501jes

 

10.4067/s0717-97072017000303621

10.1023/A:1022680903893

10.1039/D0EE01856B

 

10.1186/s13068-016-0426-0

10.1016/j.bbapap.2008.08.012

 

10.2134/jeq2005.0237

10.1016/j.cis.2012.06.013

Sleutels T. H., 2010, Microbial electrolysis kinetics and cell design

10.1007/s10295-007-0234-4

10.1016/S0022-0728(98)00161-2

10.1039/b714741d

10.1016/j.bioelechem.2009.05.005

10.1016/j.jpowsour.2017.02.088