Cyclic Hydraulic Pressure and Fluid Flow Differentially Modulate Cytoskeleton Re-Organization in MC3T3 Osteoblasts
Tóm tắt
Mechanical loads are essential toward maintaining bone mass and skeletal integrity. Such loads generate various stimuli at the cellular level, including cyclic hydraulic pressure (CHP) and fluid shear stress (FSS). To gain insight into the anabolic responses of osteoblasts to CHP and FSS, we subjected MC3T3-E1 preosteoblasts to either FSS (12 dynes/cm2) or CHP varying from 0 to 68 kPa at 0.5 Hz. As with FSS, CHP produced a significant increase in ATP release over static controls within 5 min of onset. Cell stiffness examined by atomic force microscopy increased after 15 min of either CHP or FSS stimulation, which was attenuated when extracellular ATP was hydrolyzed with apyrase. As previously shown FSS induced polymerization of actins into stress fibers. However, the microtubule network was completely disrupted under FSS. In contrast, CHP appeared to maintain strong microtubule and f-actin networks. The purinergic signaling was found to be involved in the remodeling of f-actin, but not microtubule. Both CHP and FSS applied for 1 h increased expression of COX-2. These data indicate that, while CHP and FSS produce similar anabolic responses, these stimuli have very different effects on the cytoskeleton remodeling and could contribute to loss of mechanosensitivity with extended loading.
Tài liệu tham khảo
Burger E. H., J. Klein-Nulen (1999) Responses of bone cells to biomechanical forces in vitro. Adv. Dent. Res. 13:93–98
Caffrey J. M., M. C. Farach-Carson (1989) Vitamin D3 metabolites modulate dihydropyridine-sensitive calcium currents in clonal rat osteosarcoma cells. J. Biol. Chem. 264(34):20265–20274
Charras G. T., M. A. Horton (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82(6):2970–2981
Chen N. X., D. J. Geist, D. C. Genetos, F. M. Pavalko, R. L. Duncan (2003) Fluid shear-induced NFkappaB translocation in osteoblasts is mediated by intracellular calcium release. Bone 33(3):399–410
Chen N. X., K. D. Ryder, F. M. Pavalko, C. H. Turner, D. B. Burr, J. Qiu, R. L. Duncan (2000) Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am. J. Physiol. Cell Physiol. 278(5):C989–C997
Docheva D., D. Padula, C. Popov, W. Mutschler, H. Clausen-Schaumann, M. Schieker (2008) Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy. J. Cell Mol. Med. 12(2):537–552
Duncan R., S. Misler (1989) Voltage-activated and stretch-activated Ba2+ conducting channels in an osteoblast-like cell line (UMR 106). FEBS Lett. 251(1–2):17–21
Duncan R. L., C. H. Turner (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 57(5):344–358
Forwood M. R. (1996) Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J. Bone Miner. Res. 11(11):1688–1693
Genetos D. C., D. J. Geist, D. Liu, H. J. Donahue, R. L. Duncan (2005) Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts. J. Bone Miner. Res. 20(1):41–49
Glanstchnig H., F. Varga, M. Rumpler, K. Klaushofer (1996) Prostacyclin (PGI2): a potential mediator of c-fos expression induced by hydrostatic pressure in osteoblastic cells. Eur. J. Clin. Invest. 26(7):544–548
Helmke B. P., P. F. Davies (2002) The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann. Biomed. Eng. 30(3):284–296
Hung C. T., F. D. Allen, S. R. Pollack, C. T. Brighton (1996) Intracellular Ca2+ stores and extracellular Ca2+ are required in the real-time Ca2+ response of bone cells experiencing fluid flow. J. Biomech. 29(11):1411–1417
Jacobs C. R., C. E. Yellowley, B. R. Davis, Z. Zhou, J. M. Cimbala, H. J. Donahue (1998) Differential effect of steady versus oscillating flow on bone cells. J. Biomech. 31(11):969–976
Katz S., R. Boland, G. Santillan (2006) Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int. J. Biochem. Cell Biol. 38(12):2082–2091
Kelly P. J., J. T. Bronk (1990) Venous pressure and bone formation. Microvasc. Res. 39(3):364–375
Klein-Nulend J., J. Roelofsen, C. M. Semeins, A. L. Bronckers, E. H. Burger (1997) Mechanical stimulation of osteopontin mRNA expression and synthesis in bone cell cultures. J. Cell Physiol. 170(2):174–181
Klein-Nulend J., J. Roelofsen, J. G. Sterck, C. M. Semeins, E. H. Burger (1995) Mechanical loading stimulates the release of transforming growth factor-beta activity by cultured mouse calvariae and periosteal cells. J. Cell Physiol. 163(1):115–119
Knight M. M., T. Toyoda, D. A. Lee, D. L. Bader (2006) Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose. J. Biomech. 39(8):1547–1551
Li J., D. Liu, H. Z. Ke, R. L. Duncan, C. H. Turner (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J. Biol. Chem. 280(52):42952–42959
Mak A. F., W. M. Lai, V. C. Mow (1987) Biphasic indentation of articular cartilage–I. Theoretical analysis. J. Biomech. 20(7):703–714
Meazzini M. C., C. D. Toma, J. L. Schaffer, M. L. Gray, L. C. Gerstenfeld (1998) Osteoblast cytoskeletal modulation in response to mechanical strain in vitro. J. Orthop. Res. 16(2):170–180
Mott R. E., B. P. Helmke (2007) Mapping the dynamics of shear stress-induced structural changes in endothelial cells. Am. J. Physiol. Cell Physiol. 293(5):C1616–C1626
Myers K. A., J. B. Rattner, N. G. Shrive, D. A. Hart (2007) Hydrostatic pressure sensation in cells: integration into the tensegrity model. Biochem. Cell Biol. 85(5):543–551
Myers K. A., J. B. Rattner, N. G. Shrive, D. A. Hart (2007) Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity. Biochem. Biophys. Res. Commun. 364(2):214–219
Na S., O. Collin, F. Chowdhury, B. Tay, M. Ouyang, Y. Wang, N. Wang (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl. Acad. Sci. USA 105(18):6626–6631.
Nagatomi J., B. P. Arulanandam, D. W. Metzger, A. Meunier, R. Bizios (2001) Frequency- and duration-dependent effects of cyclic pressure on select bone cell functions. Tissue Eng. 7(6):717–728
Nagatomi J., B. P. Arulanandam, D. W. Metzger, A. Meunier, R. Bizios (2003) Cyclic pressure affects osteoblast functions pertinent to osteogenesis. Ann. Biomed. Eng. 31(8):917–923
Norvell S. M., S. M. Ponik, D. K. Bowen, R. Gerard, F. M. Pavalko (2004) Fluid shear stress induction of COX-2 protein and prostaglandin release in cultured MC3T3-E1 osteoblasts does not require intact microfilaments or microtubules. J. Appl. Physiol. 96(3):957–966
Owan I., D. B. Burr, C. H. Turner, J. Qiu, Y. Tu, J. E. Onyia, R. L. Duncan (1997) Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am. J. Physiol. 273(3 Pt 1):C810–C815
Pavalko F. M., N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y. F. Hsieh, J. Qiu, R. L. Duncan (1998) Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. 275(6 Pt 1):C1591–601
Pelling A. E., M. A. Horton (2008) An historical perspective on cell mechanics. Pflugers Arch. 456(1):3–12
Qin Y. X., T. Kaplan, A. Saldanha, C. Rubin (2003) Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J. Biomech. 36(10):1427–1437
Qin Y. X., W. Lin, C. Rubin (2002) The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Ann. Biomed. Eng. 30(5):693–702
Radmacher M., M. Fritz, C. M. Kacher, J. P. Cleveland, P. K. Hansma (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70(1):556–567
Reich K. M., C. V. Gay, J. A. Frangos (1990) Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell Physiol. 143(1):100–104
Roelofsen J., J. Klein-Nulend, E. H. Burger (1995) Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. J. Biomech. 28(12):1493–1503
Rubin C. T., L. E. Lanyon (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg. Am. 66(3):397–402
Rubin J., C. Rubin, C. R. Jacobs (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367:1–16
Saito S., P. Ngan, T. Rosol, M. Saito, H. Shimizu, N. Shinjo, J. Shanfeld, Z. Davidovitch (1991) Involvement of PGE synthesis in the effect of intermittent pressure and interleukin-1 beta on bone resorption. J. Dent. Res. 70(1):27–33
Schliwa M., U. Euteneuer, J. C. Bulinski, J. G. Izant (1981) Calcium lability of cytoplasmic microtubules and its modulation by microtubule-associated proteins. Proc. Natl. Acad. Sci. USA 78(2):1037–1041
Searby N. D., C. R. Steele, R. K. Globus (2005) Influence of increased mechanical loading by hypergravity on the microtubule cytoskeleton and prostaglandin E2 release in primary osteoblasts. Am. J. Physiol. Cell Physiol. 289(1):C148–C158
Silberberg Y. R., A. E. Pelling, G. E. Yakubov, W. R. Crum, D. J. Hawkes, M. A. Horton (2008) Mitochondrial displacements in response to nanomechanical forces. J. Mol. Recognit. 21(1):30–36
Stevens H. Y., D. R. Meays, J. A. Frangos (2006) Pressure gradients and transport in the murine femur upon hindlimb suspension. Bone 39(3):565–572
Stevens H. Y., D. R. Meays, J. Yeh, L. M. Bjursten, J. A. Frangos (2006) COX-2 is necessary for venous ligation-mediated bone adaptation in mice. Bone 38(1):93–104
Stolz M., R. Raiteri, A. U. Daniels, M. R. VanLandingham, W. Baschong, U. Aebi (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys. J. 86(5):3269–3283
Takai E., K. D. Costa, A. Shaheen, C. T. Hung, X. E. Guo (2005) Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann. Biomed. Eng. 33(7):963–971
Takai E., R. L. Mauck, C. T. Hung, X. E. Guo (2004) Osteocyte viability and regulation of osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure. J. Bone Miner. Res. 19(9):1403–1410
Uhthoff, H. K. and Z. F. Jaworski. Bone loss in response to long-term immobilisation. J. Bone Joint Surg. Br. 60-B(3):420–429, 1978
Weber K., P. C. Rathke, M. Osborn (1978) Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. Proc. Natl. Acad. Sci. USA 75(4):1820–1824
Weinbaum S., S. C. Cowin, Y. Zeng (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27(3):339–360
You J., C. R. Jacobs, T. H. Steinberg, H. J. Donahue (2002) P2Y purinoceptors are responsible for oscillatory fluid flow-induced intracellular calcium mobilization in osteoblastic cells. J. Biol. Chem. 277(50):48724–48729
You J., C. E. Yellowley, H. J. Donahue, Y. Zhang, Q. Chen, C. R. Jacobs (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J. Biomech. Eng. 122(4):387–393
Zhang J., K. D. Ryder, J. A. Bethel, R. Ramirez, R. L. Duncan (2006) PTH-induced actin depolymerization increases mechanosensitive channel activity to enhance mechanically stimulated Ca2+ signaling in osteoblasts. J. Bone Miner. Res. 21(11):1729–1737
Zhang D., S. Weinbaum, S. C. Cowin (1998) Estimates of the peak pressures in bone pore water. J. Biomech. Eng. 120(6):697–703