Cycle Traversability for Claw-Free Graphs and Polyhedral Maps

Combinatorica - Tập 40 - Trang 405-433 - 2020
Ervin Győri1, Michael D. Plummer2, Dong Ye3, Xiaoya Zha3
1Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary
2Department of Mathematics, Vanderbilt University, Nashville, USA
3Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, USA

Tóm tắt

Let G be a graph, and $$v \in V(G)$$ and $$S \subseteq V(G)\setminus{v}$$ of size at least k. An important result on graph connectivity due to Perfect states that, if v and S are k-linked, then a (k−1)-link between a vertex v and S can be extended to a k-link between v and S such that the endvertices of the (k−1)-link are also the endvertices of the k-link. We begin by proving a generalization of Perfect's result by showing that, if two disjoint sets S1 and S2 are k-linked, then a t-link (t

Tài liệu tham khảo

J. A. Bondy and L. Lovász: Cycles through specified vertices of a graph, Combinatorica1 (1981), 117–140. Z. Chen: A twelve vertex theorem for 3-connected claw-free graphs, Graphs Combin.32 (2016), 553–558. M. Chudnovsky and P. D. Seymour: The structure of claw-free graphs, in: Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, 2005, 153–171. V. Chvátal: New directions in Hamiltonian graph theory, (Proc. Third Ann Arbor Conf. Graph Theory, Univ. Michigan, Ann Arbor, Mich., 1971), Academic Press, New York, 1973, 65–95. G. A. Dirac: In abstrakten graphen vorhandene vollständige 4-graphen und ihre unterteilungen, Math. Nachr.22 (1960), 61–85. M. N. Ellingham, D. A. Holton and C. H.C. Little: Cycles through ten vertices in 3-connected cubic graphs, Combinatorica4 (1984), 265–273. R. Faudree, E. Flandrin and Z. Ryjáček: Claw-free graphs–a survey, Discrete Math.164 (1997), 87–147. E. Flandrin, E. Győri, H. Li and J. Shu: Cyclability in k-connected K1,4-free graphs, Discrete Math.310 (2010), 2735–2741. R. Gould: A look at cycles containing specified elements of a graph, Discrete Math.309 (2009), 6299–6311. E. Győri and M. D. Plummer: A nine vertex theorem for 3-connected claw-free graphs, Stud. Sci. Math. Hungar.38 (2001), 233–244. R. Häggkvist and W. Mader: Circuits through prescribed vertices in k-connected k-regular graphs, J. Graph Theory39 (2002), 145–163. R. Häggkvist and C. Thomassen: Circuits through specified edges, Discrete Math.41 (1982), 29–34. R. Halin: Zur Theorie der n-fach zusammenhängenden Graphen, Abh. Math. Sem Hamburg33 (1969), 133–164. D. A. Holton, B. D. McKay, M. D. Plummer and C. Thomassen: A nine point theorem for 3-connected graphs, Combinatorica2 (1982), 53–62. D. A. Holton and M. D. Plummer: Cycles through prescribed and forbidden point sets, (Workshop on Combinatorial Optimization, Bonn, 1980), Ann. Discrete Math.16, North-Holland, 1982, 129–147. D. A. Holton and C. Thomassen: Research problem 81, Discrete Math.62 (1986), 111–112. K. Kawarabayashi: One or two disjoint circuits cover independent edges: Lovász—Woodall Conjecture, J. Combin. Theory Ser. B84 (2002), 1–44. K. Kawarabayashi: Cycles through a prescribed vertex set in N-connected graphs, J. Combin. Theory Ser. B90 (2004), 315–323. A. K. Kelmans and M. V. Lomonosov: When m vertices in a k-connected graph cannot be walked round along a simple cycle, Discrete Math.38 (1982), 317–322. L. Lovász, Problem 5, Per. Math. Hungar.4 (1974), 82. M. M. Matthews and D. P. Sumner: Hamiltonian results in K1;3-free graphs, J. Graph Theory8 (1984), 139–146. D. M. Mesner and M. E. Watkins: Some theorems about n-vertex connected graphs, J. Math. Mech.16 (1966), 321–326. B. Mohar and C. Thomassen: Graphs on Surfaces, Hopkins Univ. Press, Baltimore, 2001. D. A. Nelson: Hamiltonian Graphs, M.A. Thesis, Vanderbilt University, 1973. H. Perfect: Applications of Menger's Graph Theorem, J. Math. Anal. Appl.22 (1968), 96–111. M. D. Plummer and E. Wilson: On cycles and connectivity in planar graphs, Canad. Math. Bull.16 (1973), 283–288. G. T. Sallee: Circuits and paths through specified nodes, J. Combin. Theory Ser. B15 (1973), 32–39. R. Thomas and X. Yu: 4-connected projective-planar graphs are Hamiltonian, J. Combin. Theory Ser. B62 (1994), 114–132. W. T. Tutte: A theorem on planar graphs, Trans. Amer. Math. Soc.82 (1956), 99–116. M. E. Watkins and D. M. Mesner: Cycles and connectivity in graphs, Canad. J. Math.19 (1967), 1319–1328. D. R. Woodall: Circuits containing specified edges, J. Combin. Theory Ser. B22 (1977), 274–278.