Cut or burnt? – Categorizing morphological characteristics of heat-induced fractures and sharp force trauma
Tài liệu tham khảo
P. Mayne Correia, Fire Modification of Bone, in: W.D. Haglund, M.H. Sorg (Eds.), Forensic Taphon. Postmortem Fate Hum. Remain., CRC Press, 1996. https://doi.org/10.1201/9781439821923.ch18.
Alunni, 2014, Forensic aspect of cremations on wooden pyre, Forensic Sci. Int., 241, 167, 10.1016/j.forsciint.2014.05.023
Ubelaker, 1995, The Role of Forensic Anthropology in the Recovery and Analysis of Branch Davidian Compound Victims: Recovery Procedures and Characteristics of the Victims, J. Forensic Sci., 40, 13784J, 10.1520/JFS13784J
Lunetta, 2003, International collaboration in mass disasters involving foreign nationals within the EU, Int. J. Legal Med., 117, 204, 10.1007/s00414-003-0366-7
Blau, 2017, How traumatic: a review of the role of the forensic anthropologist in the examination and interpretation of skeletal trauma, Aust. J. Forensic Sci., 49, 261, 10.1080/00450618.2016.1153715
Bohnert, 1998, The degree of destruction of human bodies in relation to the duration of the fire, Forensic Sci. Int., 95, 11, 10.1016/S0379-0738(98)00076-0
Gonçalves, 2013, Osteometric sex determination of burned human skeletal remains, J. Forensic Leg. Med., 20, 906, 10.1016/j.jflm.2013.07.003
C. Cavazzuti, B. Bresadola, C. D’Innocenzo, S. Interlando, A. Sperduti, Towards a new osteometric method for sexing ancient cremated human remains. Analysis of Late Bronze Age and Iron Age samples from Italy with gendered grave goods, PLoS One. 14 (2019) e0209423. Doi: 10.1371/journal.pone.0209423.
McKinley, 1993, Bone fragment size and weights of bone from modern British cremations and the implications for the interpretation of archaeological cremations, Int. J. Osteoarchaeol., 3, 283, 10.1002/oa.1390030406
Chirachariyavej, 2006, Relationship between bone and ash weight to age, body weight and body length of thai adults after cremation, J. Med. Assoc. Thai., 89, 1940
T.L. Van Deest, T.A. Murad, E.J. Bartelink, A Re-examination of Cremains Weight: Sex and Age Variation in a Northern California Sample*, J. Forensic Sci. 56 (2011) 344–349. https://doi.org/10.1111/j.1556-4029.2010.01658.x.
Gonçalves, 2013, Weight References for Burned Human Skeletal Remains from Portuguese Samples, J. Forensic Sci., 58, 1134, 10.1111/1556-4029.12167
Harvig, 2013, On the volume of cremated remains – a comparative study of archaeologically recovered cremated bone volume as measured manually and assessed by Computed Tomography and by Stereology, J. Archaeol. Sci., 40, 2713, 10.1016/j.jas.2013.01.024
Gonçalves, 2015, Estimation of the pre-burning condition of human remains in forensic contexts, Int. J. Legal Med., 129, 1137, 10.1007/s00414-014-1027-8
Keough, 2015, Assessment of skeletal changes after post-mortem exposure to fire as an indicator of decomposition stage, Forensic Sci. Int., 246, 17, 10.1016/j.forsciint.2014.10.042
Lemmers, 2020, Burned Fleshed or Dry? The Potential of Bioerosion to Determine the Pre-Burning Condition of Human Remains, J. Archaeol. Method Theory, 27, 972, 10.1007/s10816-020-09446-x
Holden, 1995, Scanning electron microscope observations of incinerated human femoral bone: a case study, Forensic Sci. Int., 74, 17, 10.1016/0379-0738(95)01734-Z
Thompson, 2005, Heat-induced Dimensional Changes in Bone and their Consequences for Forensic Anthropology, J. Forensic Sci., 50, 1, 10.1520/JFS2004297
Thompson, 2007, A novel approach to the visualisation of heat-induced structural change in bone, Sci. Justice, 47, 99, 10.1016/j.scijus.2006.05.002
Marques, 2018, Heat-induced Bone Diagenesis Probed by Vibrational Spectroscopy, Sci. Rep., 8, 10.1038/s41598-018-34376-w
Karni, 2013, Thermal Degradation of DNA, DNA Cell Biol., 32, 298, 10.1089/dna.2013.2056
Ellingham, 2015, Estimating temperature exposure of burnt bone — A methodological review, Sci. Justice, 55, 181, 10.1016/j.scijus.2014.12.002
Krap, 2017, Temperature estimations of heated bone: A questionnaire-based study of accuracy and precision of interpretation of bone colour by forensic and physical anthropologists, Leg. Med., 29, 22, 10.1016/j.legalmed.2017.08.001
Wärmländer, 2019, Estimating the Temperature of Heat‐exposed Bone via Machine Learning Analysis of SCI Color Values: A Pilot Study, J. Forensic. Sci., 64, 190, 10.1111/1556-4029.13858
Ubelaker, 2009, The forensic evaluation of burned skeletal remains: A synthesis, Forensic Sci. Int., 183, 1, 10.1016/j.forsciint.2008.09.019
M. Page, J. Taylor, M. Blenkin, Forensic Identification Science Evidence Since Daubert: Part I-A Quantitative Analysis of the Exclusion of Forensic Identification Science Evidence, J. Forensic Sci. 56 (2011) 1180–1184. https://doi.org/10.1111/j.1556-4029.2011.01777.x.
K.M. Lesciotto, The Impact of Daubert on the Admissibility of Forensic Anthropology Expert Testimony, J. Forensic Sci. 60 (2015) 549–555. https://doi.org/10.1111/1556-4029.12740.
Etxeberria Gabilondo, 1994, Aspectos macroscópicos del hueso sometido al fuego: Revisión de las cremaciones descritas en el País Vasco desde la arqueología, Munibe. Ciencias Nat., 111
Whyte, 2001, Distinguishing Remains of Human Cremations from Burned Animal Bones, J. Field Archaeol., 28, 437, 10.1179/jfa.2001.28.3-4.437
Gonçalves, 2011, Implications of heat-induced changes in bone on the interpretation of funerary behaviour and practice, J. Archaeol. Sci., 38, 1308, 10.1016/j.jas.2011.01.006
Van Deest, 2012, Advances in the Anthropological Analysis of Cremated Remains, 418
S.A. Symes, C.W. Rainwater, E.N. Chapman, D.R. Gipson, A.L. Piper, Patterned Thermal Destruction in a Forensic Setting, in: C. Schmidt, S.A. Symes (Eds.), Anal. Burn. Hum. Remain., Elsevier, 2015: pp. 17–59. https://doi.org/10.1016/B978-0-12-800451-7.00002-4.
M.R. Schurr, R.G. Hayes, D.C. Cook, Thermally Induced Changes, in: C. Schmidt, S.A. Symes (Eds.), Anal. Burn. Hum. Remain., Elsevier, 2015: pp. 105–118. https://doi.org/10.1016/B978-0-12-800451-7.00005-X.
Vassalo, 2019, The G-force awakens: the influence of gravity in bone heat-induced warping and its implications for the estimation of the pre-burning condition of human remains, Aust. J. Forensic Sci., 51, 201, 10.1080/00450618.2017.1340521
Herrmann, 1999, The Differentiation of Traumatic and Heat-Related Fractures in Burned Bone, J. Forensic Sci., 44, 14495J, 10.1520/JFS14495J
Emanovsky, 2002, Can Sharp Force Trauma To Bone Be Recognized After Fire Modification? An Experiment Using Odocoileus virginianus (White-Tailed Deer) Ribs, Proc. Annu. Meet. Am. Acad. Forensic Sci., 8, 214
de Gruchy, 2002, Identifying Chop Marks on Cremated Bone: A Preliminary Study, J. Forensic Sci., 47, 15506J, 10.1520/JFS15506J
Pope, 2004, Identification of Traumatic Injury in Burned Cranial Bone: An Experimental Approach, J. Forensic Sci., 49, 1, 10.1520/JFS2003286
S.-M. Marciniak, A Preliminary Assessment of the Identification of Saw Marks on Burned Bone, J. Forensic Sci. 54 (2009) 779–785. https://doi.org/10.1111/j.1556-4029.2009.01044.x.
P. Poppa, D. Porta, D. Gibelli, A. Mazzucchi, A. Brandone, M. Grandi, C. Cattaneo, Detection of Blunt, Sharp Force and Gunshot Lesions on Burnt Remains, Am. J. Forensic Med. Pathol. 32 (2011) 275–279. https://doi.org/10.1097/PAF.0b013e3182198761.
Kooi, 2013, SEM and Stereomicroscopic Analysis of Cut Marks in Fresh and Burned Bone, J. Forensic Sci., 58, 452, 10.1111/1556-4029.12050
Robbins, 2015, Interpreting the Effects of Burning on Pre-incineration Saw Marks in Bone, J. Forensic. Sci., 60, S182, 10.1111/1556-4029.12580
Waltenberger, 2017, Effects of heat on cut mark characteristics, Forensic Sci. Int., 271, 49, 10.1016/j.forsciint.2016.12.018
Koch, 2017, Detection of Skeletal Trauma on Whole Pigs Subjected to a Fire Environment, J. Anthropol. Reports., 02, 1
Macoveciuc, 2017, Sharp and blunt force trauma concealment by thermal alteration in homicides: An in-vitro experiment for methodology and protocol development in forensic anthropological analysis of burnt bones, Forensic Sci. Int., 275, 260, 10.1016/j.forsciint.2017.03.014
Galtés, 2019, Differentiation between perimortem trauma and heat-induced damage: the use of perimortem traits on burnt long bones, Forensic Sci. Med. Pathol., 15, 453, 10.1007/s12024-019-00118-1
S. Symes, J. Williams, E. Murray, J. Michael Hoffman, T. Holland, J. Mather Sau, F. Saul, E. Pope, Taphonomic Context of Sharp-Force Trauma in Suspected Cases of Human Mutilation and Dismemberment, in: W.D. Haglund, M.H. Sorg (Eds.), Adv. Forensic Taphon. Method, Theory, Archaeol. Perspect., CRC Press, Boca Raton, Fla, 2001: pp. 403–434. https://doi.org/10.1201/9781420058352.ch21.
E.H. Kimmerle, J.P. Baraybar, Differential Diagnosis of Skeletal Injuries, in: Taylor & Francis Inc (Ed.), Skelet. Trauma Identif. Inj. Resulting from Hum. Rights Abus. Armed Confl., 2nd ed., CRC Press, Boca Raton, 2008: pp. 21–87.
Symes, 2010, Knife and Saw Toolmark Analysis in Bone: A Manual Designed for the Examination of Criminal Mutilation and Dismemberment, Pennsylvania Mercyhurst Coll.
Love, 2019, Sharp force trauma analysis in bone and cartilage: A literature review, Forensic Sci. Int., 299, 119, 10.1016/j.forsciint.2019.03.035
P.J. Naranjo Martínez, J.I. de la Torre, Castil de Griegos y Puente de la Sierra: Un Modelo de poblamiento celtibérico en el Alto Tajo, VII Simp. Sobre Los Celtíberos Nuevos Hallazgos, Nuevas Interpret. Daroca, 20-22 Marzo 2012. (2012) 20–22.
P.E. Shrout, J.L. Fleiss, Intraclass correlations: Uses in assessing rater reliability., Psychol. Bull. 86 (1979) 420–428. Doi: 10.1037/0033-2909.86.2.420.
Ubelaker, 1995, Differentiation of Perimortem and Postmortem Trauma Using Taphonomic Indicators, J. Forensic Sci., 40, 13818J, 10.1520/JFS13818J
Wheatley, 2008, Perimortem or Postmortem Bone Fractures? An Experimental Study of Fracture Patterns in Deer Femora, J. Forensic. Sci., 53, 69, 10.1111/j.1556-4029.2008.00593.x
Moraitis, 2009, Fracture characteristics of perimortem trauma in skeletal material, Internet J. Biol. Anthropol., 3, 1
Coelho, 2013, Timing of blunt force injuries in long bones: The effects of the environment, PMI length and human surrogate model, Forensic Sci. Int., 233, 230, 10.1016/j.forsciint.2013.09.022