Curved fronts in the Belousov–Zhabotinskii reaction–diffusion systems in R 2
Tài liệu tham khảo
Belousov, 1959, A periodic reaction and its mechanism, Ref. Radiat. Med. Medgiz, 145
Bonnet, 1999, Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31, 80, 10.1137/S0036141097316391
Brazhnik, 1995, Non-spiral autowave structures in unrestricted excitable media, Phys. Lett. A, 199, 40, 10.1016/0375-9601(95)00024-W
Brazhnik, 2000, On traveling wave solutions of Fisher's equation in two spatial dimensions, SIAM J. Appl. Math., 60, 371, 10.1137/S0036139997325497
Conley, 1984, An application of the generalized Morse index to travelling wave solutions of a competitive reaction–diffusion model, Indiana Univ. Math. J., 33, 319, 10.1512/iumj.1984.33.33018
Friedman, 1964
Field, 1972, Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system, J. Amer. Chem. Soc., 94, 8649, 10.1021/ja00780a001
Field, 1974, Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction, J. Chem. Phys., 60, 1877, 10.1063/1.1681288
Fife, 1975, The approach of solutions of nonlinear diffusion equations to travelling wave solutions, Bull. Amer. Math. Soc., 81, 1076, 10.1090/S0002-9904-1975-13922-X
Gardner, 1982, Existence and stability of travelling wave solutions of competition models: a degree theoretic approach, J. Differential Equations, 44, 343, 10.1016/0022-0396(82)90001-8
Gibbs, 1980, Traveling waves in the Belousov–Zhabotinskii reaction, SIAM J. Appl. Math., 38, 422, 10.1137/0138035
Gilbarg, 2001
Hamel, 2001, Travelling fronts and entire solutions of the Fisher–KPP equation in RN, Arch. Ration. Mech. Anal., 157, 91, 10.1007/PL00004238
Hamel, 2004, Stability of travelling waves in a model for conical flames in two space dimensions, Ann. Sci. Éc. Norm. Supér., 37, 469, 10.1016/j.ansens.2004.03.001
Hamel, 2002, Conical-shaped travelling fronts allied to the mathematical analysis of the shape of premixed Bunsen flames, 169
Hamel, 2005, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13, 1069, 10.3934/dcds.2005.13.1069
Hamel, 2006, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14, 75
Huang, 2008, Stability of travelling fronts of the Fisher–KPP equation in RN, NoDEA Nonlinear Differential Equations Appl., 15, 599, 10.1007/s00030-008-7041-0
Haragus, 2006, Almost planar waves in anisotropic media, Comm. Partial Differential Equations, 31, 791, 10.1080/03605300500361420
Haragus, 2006, Corner defects in almost planar interface propagation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 283, 10.1016/j.anihpc.2005.03.003
Haragus, 2007, A bifurcation approach to non-planar traveling waves in reaction–diffusion systems, GAMM-Mitt., 30, 75, 10.1002/gamm.200790012
Kanel', 1990, Existence of a travelling wave solution of the Belousov–Zhabotinskii system, Differ. Uravn., 26, 652
Kapel', 1991, Existence of travelling-wave type solutions for the Belousov–Zhabotinskii system of equations, Sib. Math. Zh., 32, 47
Kurokawa, 2011, Multi-dimensional pyramidal travelling fronts in the Allen–Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141, 1031, 10.1017/S0308210510001253
Klaasen, 1981, The asymptotic behavior of solutions of a system of reaction–diffusion equations which models the Belousov–Zhabotinskii chemical reaction, J. Differential Equations, 40, 253, 10.1016/0022-0396(81)90021-8
Liang, 2007, Asymptotic speeds of spread and traveling waves for monotone semiflows with application, Comm. Pure Appl. Math., 60, 1, 10.1002/cpa.20154
Lin, 2009, Travelling wavefronts of Belousov–Zhabotinskii system with diffusion and delay, Appl. Math. Lett., 22, 341, 10.1016/j.aml.2008.04.006
Mischaikow, 1993, Travelling waves for mutualist species, SIAM J. Math. Anal., 24, 987, 10.1137/0524059
Murray, 1977
Murray, 1976, On travelling wave solutions in a model for the Belousov–Zhabotinskii reaction, J. Theoret. Biol., 56, 329, 10.1016/S0022-5193(76)80078-1
Manoranjan, 1982, A numerical study of the Belousov–Zhabotinskii reaction using Galerkin finite element methods, J. Math. Biol., 16, 251
Ni, 2013, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8, 379, 10.3934/nhm.2013.8.379
Ninomiya, 2005, Existence and global stability of traveling curved fronts in the Allen–Cahn equations, J. Differential Equations, 213, 204, 10.1016/j.jde.2004.06.011
Ninomiya, 2006, Global stability of traveling curved fronts in the Allen–Cahn equations, Discrete Contin. Dyn. Syst., 15, 819, 10.3934/dcds.2006.15.819
Quinney, 1979, On computing travelling wave solutions in a model for the Belousov–Zhabotinskii reaction, J. Inst. Math. Appl., 23, 193, 10.1093/imamat/23.2.193
Sattinger, 1971, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21, 979, 10.1512/iumj.1972.21.21079
Taniguchi, 2007, Traveling fronts of pyramidal shapes in the Allen–Cahn equations, SIAM J. Math. Anal., 39, 319, 10.1137/060661788
Taniguchi, 2009, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations, J. Differential Equations, 246, 2103, 10.1016/j.jde.2008.06.037
Taniguchi, 2012, Multi-dimensional traveling fronts in bistable reaction–diffusion equations, Discrete Contin. Dyn. Syst., 32, 1011, 10.3934/dcds.2012.32.1011
Taniguchi, 2015, An (N-1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen–Cahn equation, SIAM J. Math. Anal., 47, 455, 10.1137/130945041
Taniguchi, 2016, Convex compact sets in RN−1 give traveling fronts of cooperation-diffusion systems in RN, J. Differential Equations, 260, 4301, 10.1016/j.jde.2015.11.010
Trofimchuk, 2013, Traveling waves for a model of the Belousov–Zhabotinskii reaction, J. Differential Equations, 254, 3690, 10.1016/j.jde.2013.02.005
Trofimchuk, 2014, On the minimal speed of front propagation in a model of the Belousov–Zhabotinskii reaction, Discrete Contin. Dyn. Syst. Ser. B, 19, 1769
Troy, 1980, The existence of traveling wave front solutions of a model of the Belousov–Zhabotinskii chemical reaction, J. Differential Equations, 36, 89, 10.1016/0022-0396(80)90078-9
Pérez-Muñuzuri, 1995, V-shaped stable nonspiral patterns, Phys. Rev. E, 51, 845, 10.1103/PhysRevE.51.R845
Volpert, 1991, Application of the theory of the rotation of vector fields to the investigation of wave solutions of parabolic equations, Trans. Moscow Math. Soc., 1990, 59
Volpert, 1994, Traveling Wave Solutions of Parabolic Systems, vol. 140
Wang, 2012, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32, 2339, 10.3934/dcds.2012.32.2339
Wang, 2016, Nonplanar traveling fronts in reaction–diffusion equations with combustion and degenerate Fisher–KPP nonlinearities, J. Differential Equations, 260, 6405, 10.1016/j.jde.2015.12.045
Wang, 2016, Existence, uniqueness and stability of pyramidal traveling fronts in reaction–diffusion systems, Sci. China Math., 59, 1869, 10.1007/s11425-016-0015-x
Wang, 2017, On the existence of axisymmetric traveling fronts in Lotka–Volterra competition-diffusion systems in R3, Discrete Contin. Dyn. Syst. Ser. B, 22, 1111
Wang, 1994, Explicit wave front solutions of Noyes–Field systems for the Belousov–Zhabotinskii reaction, J. Math. Anal. Appl., 182, 705, 10.1006/jmaa.1994.1114
Protter, 1984
Xin, 1992, Multidimensional stability of traveling waves in a bistable reaction–diffusion equation I, Comm. Partial Differential Equations, 17, 1889, 10.1080/03605309208820907
Ye, 1987, Travelling wave front solutions of Noyes–Field system for Belousov–Zhabotinskii reaction, Nonlinear Anal., 11, 1289, 10.1016/0362-546X(87)90046-0
Ye, 1989, A note on traveling wave solutions for Belousov–Zhabotinskii chemical reaction, J. Beijing Inst. Technol., 4, 5
Zaikin, 1970, Concentration wave propagation in two-dimensional liquid-phase self-oscillating system, Nature, 225, 535, 10.1038/225535b0