Curvature and the eigenvalues of the Laplacian

Journal of Differential Geometry - Tập 1 Số 1-2 - 1967
H. P. McKean1, I. M. Singer2
1Rockefeller University
2Massachusetts Institute of Technology,

Tóm tắt

Từ khóa


Tài liệu tham khảo

[1] M. Berger, Sur les spectre d'une variete riemannienne, C. R. Acad Sci. Paris 263 (1966) 13-16.

[2] G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe Bestimmung der Differential Gleichung durch die Eigenwerte, Acta Math. 78 (1946) 1-96.

[3] E. Cartan, Lecons sur la geometrie des espaces de Riemann, Gauthier-Villars, Paris, 1928.

[4] S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. 45 (1944) 747- 752.

[5] S. S. Chern, On the curvature and characteristic classes of a Riemannian manifold, Abh. Math. Sem. Univ. Hamburg 20 (1956) 117-126.

[6] M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73 (April, 1966) 1-23.

[7] H. P. McKean, Jr., Kramers-Wannier duality as an instance of the Poisson summation formula, J. Math. Phys. 5 (1964) 775-776.

[8] J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964) 542.

[9] S. Minakshisundaram, A generalization of Epstein zeta functions, Can. J. Math. 1 (1949) 320-329.

[10] S. Minakshisundaram, Eigenfunctions on Riemannian manifolds, J. Indian Math. Soc. 17 (1953) 158-165.

[11] S. Minakshisundaram and A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds, Can. J. Math. 1 (1949) 242-256.

[12] E. Nelson, The adjoint Markov process, Duke Math. J. 25 (1958) 671-690.

[13] A. Pleijel, A study of certain Green's functions with applications in the theory of vibrating membranes, Ark. Mat. 2 (1954) 553-569.

[14] G. de Rham, Varieties differentiates, Hermann, Paris, 1960.

[15] R. Seeley, The power As of an elliptic operator A, to appear in Proc. Sympos. on Singular Integrals, Chicago.

[16] S. Varadhan, Diffusion processes with a small parameter, to appear in Comm. Pure Appl. Math.

[17] R. Weitzenbck, Invariantentheorie, P. Noordhoff, Groningen, 1923.

[18] H. Weyl, Das asymptotische Verteilungsgesetzder Eigenschwingungen eines beliebig gestalteten elastischen Korpers. Rend. Cir. Mat. Palermo 39 (1950) 1-50.

[19] R. Weitzenbck, Invariantentheorie, The classical groups, Princeton University Press, Princeton, 1946.