Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective

Biomaterials - Tập 112 - Trang 287-302 - 2017
Dewei Zhao1, Frank Witte2, Faqiang Lu1, Jiali Wang3, Junlei Li1, Ling Qin4,3
1Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
2Julius Wolff Institute and Center for Musculoskeletal Surgery, Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
3Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
4Center for Translational Medicine Research and Development, Institute of Biomedical Engineering, Chinese Academy of Sciences, Shenzhen, 518055, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Geetha, 2009, Ti based biomaterials, the ultimate choice for orthopaedic implants – a review, Prog. Mater. Sci., 54, 397, 10.1016/j.pmatsci.2008.06.004

Farraro, 2014, Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, J. Biomech., 47, 1979, 10.1016/j.jbiomech.2013.12.003

Chen, 2015, Metallic implant biomaterials, Mater. Sci. Eng. R Rep., 87, 1, 10.1016/j.mser.2014.10.001

Niinomi, 2012, Development of new metallic alloys for biomedical applications, Acta Biomater., 8, 3888, 10.1016/j.actbio.2012.06.037

Kennady, 1989, Stress shielding effect of rigid internal fixation plates on mandibular bone grafts. A photon absorption densitometry and quantitative computerized tomographic evaluation, Int. J. Oral Maxillofac. Surg., 18, 307, 10.1016/S0901-5027(89)80101-8

Zheng, 2014, Biodegradable metals, Mat. Sci. Eng. R., 77, 1, 10.1016/j.mser.2014.01.001

Sha, 2009, The effects of nail rigidity on fracture healing in rats with osteoporosis, Acta Orthop., 80, 135, 10.1080/17453670902807490

Minkowitz, 2007, Removal of painful orthopaedic implants after fracture union, J. Bone Jt. Surg. Am., 89, 1906, 10.2106/00004623-200709000-00003

Ibrahim, 2015, Absorbable biologically based internal fixation, Clin. Podiatr. Med. Surg., 32, 10.1016/j.cpm.2014.09.009

Ciccone, 2001, Bioabsorbable implants in orthopaedics: new developments and clinical applications, J. Am. Acad. Orthop. Surg., 9

Ambrose, 2015, Polymers in orthopaedic surgery

Amini, 2012, Short-term and long-term effects of orthopedic biodegradable implants, J. Long. Term. Eff. Med. Implant., 21, 93, 10.1615/JLongTermEffMedImplants.v21.i2.10

Barber, 2006, Long-term absorption of poly-L-lactic Acid interference screws, Arthroscopy, 22, 820, 10.1016/j.arthro.2006.04.096

Song, 1999, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater, 1, 11, 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N

Thormann, 2015, The biocompatibility of degradable magnesium interference screws: an experimental study with sheep, BioMed Res. Int., 10.1155/2015/943603

Witte, 2007, Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response, J. Biomed. Mater Res. A, 81, 748, 10.1002/jbm.a.31170

Staiger, 2006, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27, 1728, 10.1016/j.biomaterials.2005.10.003

Willbold, 2015, Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium, Acta Biomater., 11, 554, 10.1016/j.actbio.2014.09.041

Witte, 2010, The history of biodegradable magnesium implants: a review, Acta Biomater., 6, 1680, 10.1016/j.actbio.2010.02.028

Payr, 1900, Beiträge zur Technik der Blutgefäss- und Nervennaht nebst Mittheilungen über die Verwendung eines resorbirbaren Metalles in der Chirurgie, Arch. Klin. Chir., 62, 67

Lambotte, 1909, Technique et indications de la prothèse perdue dans la traitement des fractures, Presse Med. Belge., 17, 321

Lambotte, 1932, L’utilisation du magnésium comme matériel perdu dans l’ostéosynthèse, Bull. Mém Soc. Nat. Cir., 28, 1325

Verbrugge, 1934, Le matériel métallique résorbable en chirurgie osseuse, Presse Med., 23, 460

McBride, 1938, Magnesium screw and nail transfixion in fractures, South Med. J., 31, 508, 10.1097/00007611-193805000-00010

Maier, 1940, Über die Verwendbarkeit von Leichtmetallen in der Chirurgie (metallisches Magnesium als Reizmittel zur Knochenneubildung), Deut Z Chir., 253, 552, 10.1007/BF02794837

Трои⃛кий, 1948, Д.Н. Цитрин, Ра≿≿а≿ыϑаю♯ий≿я металличе≿кий ≿плаϑ ,о≿тео≿интезит“ как материал для ≿крепления ко≿ти при переломах, Хирургия, 8, 41

Verbrugge, 1937, L’utilisation du magnésium dans le traitement chirurgical des fractures, Bull. Mém Soc. Nat. Cir., 59, 813

Saris, 2000, Magnesium: an update on physiological, clinical and analytical aspects, Clin. Chim. Acta, 294, 1, 10.1016/S0009-8981(99)00258-2

Quamme, 2000, Epithelial magnesium transport and regulation by the kidney, Front. Biosci., 5, D694, 10.2741/A544

Witte, 2005, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26, 3557, 10.1016/j.biomaterials.2004.09.049

Witte, 2008, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid St. M., 12, 63, 10.1016/j.cossms.2009.04.001

Vormann, 2003, Magnesium: nutrition and metabolism, Mol. Asp. Med., 24, 27, 10.1016/S0098-2997(02)00089-4

Touyz, 2004, Magnesium in clinical medicine, Front. Biosci. a J. virtual Libr., 9, 1278, 10.2741/1316

Saris, 2000, Magnesium. An update on physiological, clinical and analytical aspects, Clin. Chim. Acta, 294, 1, 10.1016/S0009-8981(99)00258-2

Chen, 2015, Metallic implant biomaterials, Mat. Sci. Eng. R., 87, 1, 10.1016/j.mser.2014.10.001

Geetha, 2009, Ti based biomaterials, the ultimate choice for orthopaedic implants - a review, Prog. Mater Sci., 54, 397, 10.1016/j.pmatsci.2008.06.004

Cramer, 2003

Witte, 2006, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials, 27, 1013, 10.1016/j.biomaterials.2005.07.037

Zhao, 2016, Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head, Biomaterials, 81, 84, 10.1016/j.biomaterials.2015.11.038

Han, 2015, In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model, Biomaterials, 64, 57, 10.1016/j.biomaterials.2015.06.031

Grünewalda, 2015, Reaction of bone nanostructure to a biodegrading Magnesium WZ21 implant–A scanning small-angle X-ray scattering time study, Acta Biomater., 31, 448, 10.1016/j.actbio.2015.11.049

Lee, 2016, Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy, Proc. Natl. Acad. Sci. U. S. A., 113, 716, 10.1073/pnas.1518238113

Yamamoto, 2009, Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro, Mat. Sci. Eng. C-Bio S, 29, 1559, 10.1016/j.msec.2008.12.015

Wang, 2016, Biodegradable magnesium (Mg) implantation does not impose related metabolic disorders in rats with chronic renal failure, Sci. Rep., 6, 26341, 10.1038/srep26341

Wang, 2012, Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review, J. Biomed. Mater. Res. Part B Appl. Biomater., 100B, 1691, 10.1002/jbm.b.32707

Gu, 2012, In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal, Acta Biomater., 8, 2360, 10.1016/j.actbio.2012.02.018

Jahn, 2016, Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice, Acta Biomater., 36, 350, 10.1016/j.actbio.2016.03.041

Zhang, 2016, Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats, Nat. Med., 22, 1160, 10.1038/nm.4162

ISO, 2009

ISO, 2012

Fischer, 2011, Improved cytotoxicity testing of magnesium materials, Mater Sci. Eng. B Adv., 176, 830, 10.1016/j.mseb.2011.04.008

Wang, 2011, Biodegradable CaMgZn bulk metallic glass for potential skeletal application, Acta Biomater., 7, 3196, 10.1016/j.actbio.2011.04.027

Wang, 2015, Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials, Acta Biomater., 21, 237, 10.1016/j.actbio.2015.04.011

Scheideler, 2013, Comparison of different in vitro tests for biocompatibility screening of Mg alloys, Acta Biomater., 9, 8740, 10.1016/j.actbio.2013.02.020

Dziuba, 2013, Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant, Acta Biomater., 9, 8548, 10.1016/j.actbio.2012.08.028

Rossig, 2015, In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model, Acta Biomater., 25, 369, 10.1016/j.actbio.2015.07.025

Nguyen, 2013, An in vitro mechanism study on the proliferation and pluripotency of human embryonic stems cells in response to magnesium degradation, PLoS One, 8, e76547, 10.1371/journal.pone.0076547

Kramer, 2012, Regulation of medical devices in the United States and european union, N. Engl. J. Med., 366, 848, 10.1056/NEJMhle1113918

ISO, 2010

ISO, 2010

ISO, 2006

ISO, 2010

Cha, 2013, Biodegradability Engineering of Bio-absorbable Mg alloys: tailoring the electrochemical property and microstructure of constituent phases, Sci. Rep., 3, 2367, 10.1038/srep02367

Windhagen, 2013, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study, Biomed. Eng. Online, 12, 62, 10.1186/1475-925X-12-62

Chaya, 2015, In vivo study of magnesium plate and screw degradation and bone fracture healing, Acta Biomater., 18, 262, 10.1016/j.actbio.2015.02.010

Henderson, 2014, Magnesium alloys as a biomaterial for degradable craniofacial screws, Acta Biomater., 10, 2323, 10.1016/j.actbio.2013.12.040

Tie, 2016, An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg-1Sr alloy, Acta Biomater., 29, 455, 10.1016/j.actbio.2015.11.014

Chen, 2011, Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants, Int. J. Mol. Med., 28, 343

Zhang, 2009, In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation, J. Biomed. Mater Res. A, 90, 882, 10.1002/jbm.a.32132

Guan, 2014, Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair, Acs Appl. Mater Inter, 6, 21525, 10.1021/am506543a

Zhang, 2012, Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios, J. Mech. Behav. Biomed., 9, 153, 10.1016/j.jmbbm.2012.02.002

Erdmann, 2011, Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits, Acta Biomater., 7, 1421, 10.1016/j.actbio.2010.10.031

Kraus, 2012, Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone, Acta Biomater., 8, 1230, 10.1016/j.actbio.2011.11.008

Tan, 2014, Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating, Acta Biomater., 10, 2333, 10.1016/j.actbio.2013.12.020

Li, 2008, The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomaterials, 29, 1329, 10.1016/j.biomaterials.2007.12.021

Wong, 2013, In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants, Biomaterials, 34, 9863, 10.1016/j.biomaterials.2013.08.052

Henderson, 2014, Magnesium alloys as a biomaterial for degradable craniofacial screws, Acta Biomater., 10, 2323, 10.1016/j.actbio.2013.12.040

Cheng, 2016, High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF, Biomaterials, 81, 14, 10.1016/j.biomaterials.2015.12.005

Cheng, 2015, High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF, Biomaterials, 81, 14, 10.1016/j.biomaterials.2015.12.005

Syntellix, 2015

Syntellix, 2016

CFDA, 2014

U&I, 2015

Wik, 2010, Periprosthetic fracture caused by stress shielding after implantation of a femoral condyle endoprosthesis in a transfemoral amputee-a case report, Acta Orthop., 81, 765, 10.3109/17453674.2010.533937

McBride, 1938, Mg screw and nail transfixion in fractures, South Med. J., 31, 508, 10.1097/00007611-193805000-00010

McBride, 1938, Absorbable metal in bone surgery, J. Am. Med. Assoc., 111, 2464

Lalliss, 2010, The use of three types of suture and stainless steel wire tension banding for the fixation of simulated olecranon fractures a comparison study in cadaver elbows, J. Bone Jt. Surg. Br., 92b, 315, 10.1302/0301-620X.92B2.22596

Kumar, 2010, Implant removal following surgical stabilization of patella fracture, Orthopedics, 33, 10.3928/01477447-20100329-14

Chen, 1998, Comparison of biodegradable and metallic tension-band fixation for patella fractures. 38 patients followed for 2 years, Acta Orthop. Scand., 69, 39, 10.3109/17453679809002354

Seitz, 2010, The manufacture of resorbable suture material from magnesium, Adv. Eng. Mater., 12, 1099, 10.1002/adem.201000191

Seitz, 2011, The manufacture of resorbable suture material from magnesium - drawing and stranding of thin wires, Adv. Eng. Mater., 13, 1087, 10.1002/adem.201100152

Reichert, 2011, 431

Mravic, 2014, Current trends in bone tissue engineering, Biomed. Res. Int., 2014, 865270, 10.1155/2014/865270

Yusop, 2012, Porous biodegradable metals for hard tissue scaffolds: a review, Int. J. Biomater., 2012, 641430, 10.1155/2012/641430

Ryan, 2006, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 27, 2651, 10.1016/j.biomaterials.2005.12.002

Staiger, 2010, Synthesis of topologically-ordered open-cell porous magnesium, Mater. Lett., 64, 2572, 10.1016/j.matlet.2010.08.049

Wei, 2014, Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy, Mater. Sci. Eng. A, 611, 212, 10.1016/j.msea.2014.05.092

Wu, 2014, Biomimetic porous scaffolds for bone tissue engineering, Mater. Sci. Eng. R Rep., 80, 1, 10.1016/j.mser.2014.04.001

Ma, 2015, Bacterial inhibition potential of 3D rapid-prototyped magnesium-based porous composite scaffolds–an in vitro efficacy study, Sci. Rep., 5, 13775, 10.1038/srep13775

Tang, 2013, Surface coating reduces degradation rate of magnesium alloy developed for orthopaedic applications, JOT, 1, 41

Ong, 2000, Hydroxyapatite and their use as coatings in dental implants: a review, Crit. Rev. Biomed. Eng., 28, 667, 10.1615/CritRevBiomedEng.v28.i56.10

Dorozhkin, 2014, Calcium orthophosphate coatings on magnesium and its biodegradable alloys, Acta Biomater., 10, 2919, 10.1016/j.actbio.2014.02.026

Dorozhkin, 2014, Calcium orthophosphates, Biomatter, 1, 121, 10.4161/biom.18790

Cui, 2013, Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition, Acta Biomater., 9, 8650, 10.1016/j.actbio.2013.06.031

Waterman, 2011, Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time, Mater. Sci. Eng. B, 176, 1756, 10.1016/j.mseb.2011.06.021

Waterman, 2013, Improvingin vitrocorrosion resistance of biomimetic calcium phosphate coatings for Mg substrates using calcium hydroxide layer, Corros. Eng. Sci. Technol., 47, 340, 10.1179/1743278212Y.0000000018

Li, 2013, Microstructure, in vitro corrosion and cytotoxicity of Ca-P coatings on ZK60 magnesium alloy prepared by simple chemical conversion and heat treatment, J. Biomater. Appl., 28, 375, 10.1177/0885328212453958

Chai, 2012, In vitro and in vivo evaluations on osteogenesis and biodegradability of a beta-tricalcium phosphate coated magnesium alloy, J. Biomed. Mater Res. A, 100, 293, 10.1002/jbm.a.33267

Geng, 2009, The preparation, cytocompatibility, and in vitro biodegradation study of pure beta-TCP on magnesium, J. Mater Sci. Mater Med., 20, 1149, 10.1007/s10856-008-3669-x

Niu, 2013, Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating, Mater Sci. Eng. C Mater Biol. Appl., 33, 4833, 10.1016/j.msec.2013.08.008

Song, 2010, Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior, Acta Biomater., 6, 1736, 10.1016/j.actbio.2009.12.020

Bakin, 2016, Bioactivity and corrosion properties of magnesium-substituted CaP coatings produced via electrochemical deposition, Surf. Coat. Technol., 301, 29, 10.1016/j.surfcoat.2015.12.078

Hiromoto, 2015, In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite, Acta Biomater., 11, 520, 10.1016/j.actbio.2014.09.026

Tomozawa, 2011, Microstructure of hydroxyapatite- and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values, Acta Mater., 59, 355, 10.1016/j.actamat.2010.09.041

Hiromoto, 2009, High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution, Electrochim. Acta, 54, 7085, 10.1016/j.electacta.2009.07.033

Liu, 2011, Formation mechanism of calcium phosphate coating on micro-arc oxidized magnesium, Mater. Chem. Phys., 130, 1118, 10.1016/j.matchemphys.2011.08.043

Tomozawa, 2010, Microstructure of hydroxyapatite-coated magnesium prepared in aqueous solution, Surf. Coat. Technol., 204, 3243, 10.1016/j.surfcoat.2010.03.023

Kim, 2014, Hydroxyapatite coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response, J. Biomed. Mater. Res. A, 102, 429, 10.1002/jbm.a.34718

Wang, 2011, In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application, Colloids Surf. B Biointerfaces, 88, 254, 10.1016/j.colsurfb.2011.06.040

Razavi, 2015, In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications, Mater Sci. Eng. C Mater Biol. Appl., 48, 21, 10.1016/j.msec.2014.11.020

Lin, 2013, In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model, Mater Sci. Eng. C Mater Biol. Appl., 33, 3881, 10.1016/j.msec.2013.05.023

Chen, 2012, In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition, J. Biomed. Mater Res. B Appl. Biomater., 100, 533, 10.1002/jbm.b.31982

Razavi, 2014, In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants, Appl. Surf. Sci., 313, 60, 10.1016/j.apsusc.2014.05.130

Fischerauer, 2013, In vivo degradation performance of micro-arc-oxidized magnesium implants: a micro-CT study in rats, Acta Biomater., 9, 5411, 10.1016/j.actbio.2012.09.017

Razavi, 2014, Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6), Appl. Surf. Sci., 288, 130, 10.1016/j.apsusc.2013.09.160

Lin, 2014, In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy, Appl. Surf. Sci., 288, 718, 10.1016/j.apsusc.2013.10.113

Tang, 2013, Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment, Appl. Surf. Sci., 264, 816, 10.1016/j.apsusc.2012.10.146

Zheng, 2014, Biodegradable metals, Mater. Sci. Eng. R Rep., 77, 1, 10.1016/j.mser.2014.01.001

Hornberger, 2012, Biomedical coatings on magnesium alloys - a review, Acta Biomater., 8, 2442, 10.1016/j.actbio.2012.04.012

Witte, 2010, In vivo corrosion and corrosion protection of magnesium alloy LAE442, Acta Biomater., 6, 1792, 10.1016/j.actbio.2009.10.012

Yan, 2010, Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy, Mater. Sci. Eng. C, 30, 740, 10.1016/j.msec.2010.03.007

Sun, 2016, The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model, Mater Sci. Eng. C Mater Biol. Appl., 63, 506, 10.1016/j.msec.2016.03.016

Sun, 2013, In vivo comparative property study of the bioactivity of coated Mg-3Zn-0.8Zr alloy, Mater Sci. Eng. C Mater Biol. Appl., 33, 3263, 10.1016/j.msec.2013.04.006

Wu, 2013, Surface design of biodegradable magnesium alloys — A review, Surf. Coat. Technol., 233, 2, 10.1016/j.surfcoat.2012.10.009

Li, 2010, In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy, J. Mater. Sci., 45, 6038, 10.1007/s10853-010-4688-9

Wong, 2010, A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants, Biomaterials, 31, 2084, 10.1016/j.biomaterials.2009.11.111

Chen, 2011, Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation, Biomed. Mater., 6, 025005, 10.1088/1748-6041/6/2/025005

Gu, 2009, Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan, Biomed. Mater., 4, 044109, 10.1088/1748-6041/4/4/044109

Xu, 2012, Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating, Colloids Surf. B Biointerfaces, 93, 67, 10.1016/j.colsurfb.2011.12.009

Tan, 2014, Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating, Acta Biomater., 10, 2333, 10.1016/j.actbio.2013.12.020

Schaller, 2016, In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone, Mater. Sci. Eng. C, 69, 247, 10.1016/j.msec.2016.06.085

Xu, 2009, In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy, Biomaterials, 30, 1512, 10.1016/j.biomaterials.2008.12.001