Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Geetha, 2009, Ti based biomaterials, the ultimate choice for orthopaedic implants – a review, Prog. Mater. Sci., 54, 397, 10.1016/j.pmatsci.2008.06.004
Farraro, 2014, Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, J. Biomech., 47, 1979, 10.1016/j.jbiomech.2013.12.003
Chen, 2015, Metallic implant biomaterials, Mater. Sci. Eng. R Rep., 87, 1, 10.1016/j.mser.2014.10.001
Niinomi, 2012, Development of new metallic alloys for biomedical applications, Acta Biomater., 8, 3888, 10.1016/j.actbio.2012.06.037
Kennady, 1989, Stress shielding effect of rigid internal fixation plates on mandibular bone grafts. A photon absorption densitometry and quantitative computerized tomographic evaluation, Int. J. Oral Maxillofac. Surg., 18, 307, 10.1016/S0901-5027(89)80101-8
Sha, 2009, The effects of nail rigidity on fracture healing in rats with osteoporosis, Acta Orthop., 80, 135, 10.1080/17453670902807490
Minkowitz, 2007, Removal of painful orthopaedic implants after fracture union, J. Bone Jt. Surg. Am., 89, 1906, 10.2106/00004623-200709000-00003
Ibrahim, 2015, Absorbable biologically based internal fixation, Clin. Podiatr. Med. Surg., 32, 10.1016/j.cpm.2014.09.009
Ciccone, 2001, Bioabsorbable implants in orthopaedics: new developments and clinical applications, J. Am. Acad. Orthop. Surg., 9
Ambrose, 2015, Polymers in orthopaedic surgery
Amini, 2012, Short-term and long-term effects of orthopedic biodegradable implants, J. Long. Term. Eff. Med. Implant., 21, 93, 10.1615/JLongTermEffMedImplants.v21.i2.10
Barber, 2006, Long-term absorption of poly-L-lactic Acid interference screws, Arthroscopy, 22, 820, 10.1016/j.arthro.2006.04.096
Song, 1999, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater, 1, 11, 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
Thormann, 2015, The biocompatibility of degradable magnesium interference screws: an experimental study with sheep, BioMed Res. Int., 10.1155/2015/943603
Witte, 2007, Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response, J. Biomed. Mater Res. A, 81, 748, 10.1002/jbm.a.31170
Staiger, 2006, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27, 1728, 10.1016/j.biomaterials.2005.10.003
Willbold, 2015, Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium, Acta Biomater., 11, 554, 10.1016/j.actbio.2014.09.041
Witte, 2010, The history of biodegradable magnesium implants: a review, Acta Biomater., 6, 1680, 10.1016/j.actbio.2010.02.028
Payr, 1900, Beiträge zur Technik der Blutgefäss- und Nervennaht nebst Mittheilungen über die Verwendung eines resorbirbaren Metalles in der Chirurgie, Arch. Klin. Chir., 62, 67
Lambotte, 1909, Technique et indications de la prothèse perdue dans la traitement des fractures, Presse Med. Belge., 17, 321
Lambotte, 1932, L’utilisation du magnésium comme matériel perdu dans l’ostéosynthèse, Bull. Mém Soc. Nat. Cir., 28, 1325
Verbrugge, 1934, Le matériel métallique résorbable en chirurgie osseuse, Presse Med., 23, 460
McBride, 1938, Magnesium screw and nail transfixion in fractures, South Med. J., 31, 508, 10.1097/00007611-193805000-00010
Maier, 1940, Über die Verwendbarkeit von Leichtmetallen in der Chirurgie (metallisches Magnesium als Reizmittel zur Knochenneubildung), Deut Z Chir., 253, 552, 10.1007/BF02794837
Трои⃛кий, 1948, Д.Н. Цитрин, Ра≿≿а≿ыϑаю♯ий≿я металличе≿кий ≿плаϑ ,о≿тео≿интезит“ как материал для ≿крепления ко≿ти при переломах, Хирургия, 8, 41
Verbrugge, 1937, L’utilisation du magnésium dans le traitement chirurgical des fractures, Bull. Mém Soc. Nat. Cir., 59, 813
Saris, 2000, Magnesium: an update on physiological, clinical and analytical aspects, Clin. Chim. Acta, 294, 1, 10.1016/S0009-8981(99)00258-2
Quamme, 2000, Epithelial magnesium transport and regulation by the kidney, Front. Biosci., 5, D694, 10.2741/A544
Witte, 2005, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26, 3557, 10.1016/j.biomaterials.2004.09.049
Witte, 2008, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid St. M., 12, 63, 10.1016/j.cossms.2009.04.001
Vormann, 2003, Magnesium: nutrition and metabolism, Mol. Asp. Med., 24, 27, 10.1016/S0098-2997(02)00089-4
Touyz, 2004, Magnesium in clinical medicine, Front. Biosci. a J. virtual Libr., 9, 1278, 10.2741/1316
Saris, 2000, Magnesium. An update on physiological, clinical and analytical aspects, Clin. Chim. Acta, 294, 1, 10.1016/S0009-8981(99)00258-2
Geetha, 2009, Ti based biomaterials, the ultimate choice for orthopaedic implants - a review, Prog. Mater Sci., 54, 397, 10.1016/j.pmatsci.2008.06.004
Cramer, 2003
Witte, 2006, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials, 27, 1013, 10.1016/j.biomaterials.2005.07.037
Zhao, 2016, Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head, Biomaterials, 81, 84, 10.1016/j.biomaterials.2015.11.038
Han, 2015, In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model, Biomaterials, 64, 57, 10.1016/j.biomaterials.2015.06.031
Grünewalda, 2015, Reaction of bone nanostructure to a biodegrading Magnesium WZ21 implant–A scanning small-angle X-ray scattering time study, Acta Biomater., 31, 448, 10.1016/j.actbio.2015.11.049
Lee, 2016, Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy, Proc. Natl. Acad. Sci. U. S. A., 113, 716, 10.1073/pnas.1518238113
Yamamoto, 2009, Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro, Mat. Sci. Eng. C-Bio S, 29, 1559, 10.1016/j.msec.2008.12.015
Wang, 2016, Biodegradable magnesium (Mg) implantation does not impose related metabolic disorders in rats with chronic renal failure, Sci. Rep., 6, 26341, 10.1038/srep26341
Wang, 2012, Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review, J. Biomed. Mater. Res. Part B Appl. Biomater., 100B, 1691, 10.1002/jbm.b.32707
Gu, 2012, In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal, Acta Biomater., 8, 2360, 10.1016/j.actbio.2012.02.018
Jahn, 2016, Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice, Acta Biomater., 36, 350, 10.1016/j.actbio.2016.03.041
Zhang, 2016, Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats, Nat. Med., 22, 1160, 10.1038/nm.4162
ISO, 2009
ISO, 2012
Fischer, 2011, Improved cytotoxicity testing of magnesium materials, Mater Sci. Eng. B Adv., 176, 830, 10.1016/j.mseb.2011.04.008
Wang, 2011, Biodegradable CaMgZn bulk metallic glass for potential skeletal application, Acta Biomater., 7, 3196, 10.1016/j.actbio.2011.04.027
Wang, 2015, Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials, Acta Biomater., 21, 237, 10.1016/j.actbio.2015.04.011
Scheideler, 2013, Comparison of different in vitro tests for biocompatibility screening of Mg alloys, Acta Biomater., 9, 8740, 10.1016/j.actbio.2013.02.020
Dziuba, 2013, Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant, Acta Biomater., 9, 8548, 10.1016/j.actbio.2012.08.028
Rossig, 2015, In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model, Acta Biomater., 25, 369, 10.1016/j.actbio.2015.07.025
Nguyen, 2013, An in vitro mechanism study on the proliferation and pluripotency of human embryonic stems cells in response to magnesium degradation, PLoS One, 8, e76547, 10.1371/journal.pone.0076547
Kramer, 2012, Regulation of medical devices in the United States and european union, N. Engl. J. Med., 366, 848, 10.1056/NEJMhle1113918
ISO, 2010
ISO, 2010
ISO, 2006
ISO, 2010
Cha, 2013, Biodegradability Engineering of Bio-absorbable Mg alloys: tailoring the electrochemical property and microstructure of constituent phases, Sci. Rep., 3, 2367, 10.1038/srep02367
Windhagen, 2013, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study, Biomed. Eng. Online, 12, 62, 10.1186/1475-925X-12-62
Chaya, 2015, In vivo study of magnesium plate and screw degradation and bone fracture healing, Acta Biomater., 18, 262, 10.1016/j.actbio.2015.02.010
Henderson, 2014, Magnesium alloys as a biomaterial for degradable craniofacial screws, Acta Biomater., 10, 2323, 10.1016/j.actbio.2013.12.040
Tie, 2016, An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg-1Sr alloy, Acta Biomater., 29, 455, 10.1016/j.actbio.2015.11.014
Chen, 2011, Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants, Int. J. Mol. Med., 28, 343
Zhang, 2009, In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation, J. Biomed. Mater Res. A, 90, 882, 10.1002/jbm.a.32132
Guan, 2014, Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair, Acs Appl. Mater Inter, 6, 21525, 10.1021/am506543a
Zhang, 2012, Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios, J. Mech. Behav. Biomed., 9, 153, 10.1016/j.jmbbm.2012.02.002
Erdmann, 2011, Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits, Acta Biomater., 7, 1421, 10.1016/j.actbio.2010.10.031
Kraus, 2012, Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone, Acta Biomater., 8, 1230, 10.1016/j.actbio.2011.11.008
Tan, 2014, Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating, Acta Biomater., 10, 2333, 10.1016/j.actbio.2013.12.020
Li, 2008, The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomaterials, 29, 1329, 10.1016/j.biomaterials.2007.12.021
Wong, 2013, In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants, Biomaterials, 34, 9863, 10.1016/j.biomaterials.2013.08.052
Henderson, 2014, Magnesium alloys as a biomaterial for degradable craniofacial screws, Acta Biomater., 10, 2323, 10.1016/j.actbio.2013.12.040
Cheng, 2016, High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF, Biomaterials, 81, 14, 10.1016/j.biomaterials.2015.12.005
Cheng, 2015, High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF, Biomaterials, 81, 14, 10.1016/j.biomaterials.2015.12.005
Syntellix, 2015
Syntellix, 2016
CFDA, 2014
U&I, 2015
Wik, 2010, Periprosthetic fracture caused by stress shielding after implantation of a femoral condyle endoprosthesis in a transfemoral amputee-a case report, Acta Orthop., 81, 765, 10.3109/17453674.2010.533937
McBride, 1938, Mg screw and nail transfixion in fractures, South Med. J., 31, 508, 10.1097/00007611-193805000-00010
McBride, 1938, Absorbable metal in bone surgery, J. Am. Med. Assoc., 111, 2464
Lalliss, 2010, The use of three types of suture and stainless steel wire tension banding for the fixation of simulated olecranon fractures a comparison study in cadaver elbows, J. Bone Jt. Surg. Br., 92b, 315, 10.1302/0301-620X.92B2.22596
Kumar, 2010, Implant removal following surgical stabilization of patella fracture, Orthopedics, 33, 10.3928/01477447-20100329-14
Chen, 1998, Comparison of biodegradable and metallic tension-band fixation for patella fractures. 38 patients followed for 2 years, Acta Orthop. Scand., 69, 39, 10.3109/17453679809002354
Seitz, 2010, The manufacture of resorbable suture material from magnesium, Adv. Eng. Mater., 12, 1099, 10.1002/adem.201000191
Seitz, 2011, The manufacture of resorbable suture material from magnesium - drawing and stranding of thin wires, Adv. Eng. Mater., 13, 1087, 10.1002/adem.201100152
Reichert, 2011, 431
Mravic, 2014, Current trends in bone tissue engineering, Biomed. Res. Int., 2014, 865270, 10.1155/2014/865270
Yusop, 2012, Porous biodegradable metals for hard tissue scaffolds: a review, Int. J. Biomater., 2012, 641430, 10.1155/2012/641430
Ryan, 2006, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 27, 2651, 10.1016/j.biomaterials.2005.12.002
Staiger, 2010, Synthesis of topologically-ordered open-cell porous magnesium, Mater. Lett., 64, 2572, 10.1016/j.matlet.2010.08.049
Wei, 2014, Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy, Mater. Sci. Eng. A, 611, 212, 10.1016/j.msea.2014.05.092
Wu, 2014, Biomimetic porous scaffolds for bone tissue engineering, Mater. Sci. Eng. R Rep., 80, 1, 10.1016/j.mser.2014.04.001
Ma, 2015, Bacterial inhibition potential of 3D rapid-prototyped magnesium-based porous composite scaffolds–an in vitro efficacy study, Sci. Rep., 5, 13775, 10.1038/srep13775
Tang, 2013, Surface coating reduces degradation rate of magnesium alloy developed for orthopaedic applications, JOT, 1, 41
Ong, 2000, Hydroxyapatite and their use as coatings in dental implants: a review, Crit. Rev. Biomed. Eng., 28, 667, 10.1615/CritRevBiomedEng.v28.i56.10
Dorozhkin, 2014, Calcium orthophosphate coatings on magnesium and its biodegradable alloys, Acta Biomater., 10, 2919, 10.1016/j.actbio.2014.02.026
Cui, 2013, Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition, Acta Biomater., 9, 8650, 10.1016/j.actbio.2013.06.031
Waterman, 2011, Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time, Mater. Sci. Eng. B, 176, 1756, 10.1016/j.mseb.2011.06.021
Waterman, 2013, Improvingin vitrocorrosion resistance of biomimetic calcium phosphate coatings for Mg substrates using calcium hydroxide layer, Corros. Eng. Sci. Technol., 47, 340, 10.1179/1743278212Y.0000000018
Li, 2013, Microstructure, in vitro corrosion and cytotoxicity of Ca-P coatings on ZK60 magnesium alloy prepared by simple chemical conversion and heat treatment, J. Biomater. Appl., 28, 375, 10.1177/0885328212453958
Chai, 2012, In vitro and in vivo evaluations on osteogenesis and biodegradability of a beta-tricalcium phosphate coated magnesium alloy, J. Biomed. Mater Res. A, 100, 293, 10.1002/jbm.a.33267
Geng, 2009, The preparation, cytocompatibility, and in vitro biodegradation study of pure beta-TCP on magnesium, J. Mater Sci. Mater Med., 20, 1149, 10.1007/s10856-008-3669-x
Niu, 2013, Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating, Mater Sci. Eng. C Mater Biol. Appl., 33, 4833, 10.1016/j.msec.2013.08.008
Song, 2010, Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior, Acta Biomater., 6, 1736, 10.1016/j.actbio.2009.12.020
Bakin, 2016, Bioactivity and corrosion properties of magnesium-substituted CaP coatings produced via electrochemical deposition, Surf. Coat. Technol., 301, 29, 10.1016/j.surfcoat.2015.12.078
Hiromoto, 2015, In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite, Acta Biomater., 11, 520, 10.1016/j.actbio.2014.09.026
Tomozawa, 2011, Microstructure of hydroxyapatite- and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values, Acta Mater., 59, 355, 10.1016/j.actamat.2010.09.041
Hiromoto, 2009, High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution, Electrochim. Acta, 54, 7085, 10.1016/j.electacta.2009.07.033
Liu, 2011, Formation mechanism of calcium phosphate coating on micro-arc oxidized magnesium, Mater. Chem. Phys., 130, 1118, 10.1016/j.matchemphys.2011.08.043
Tomozawa, 2010, Microstructure of hydroxyapatite-coated magnesium prepared in aqueous solution, Surf. Coat. Technol., 204, 3243, 10.1016/j.surfcoat.2010.03.023
Kim, 2014, Hydroxyapatite coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response, J. Biomed. Mater. Res. A, 102, 429, 10.1002/jbm.a.34718
Wang, 2011, In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application, Colloids Surf. B Biointerfaces, 88, 254, 10.1016/j.colsurfb.2011.06.040
Razavi, 2015, In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications, Mater Sci. Eng. C Mater Biol. Appl., 48, 21, 10.1016/j.msec.2014.11.020
Lin, 2013, In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model, Mater Sci. Eng. C Mater Biol. Appl., 33, 3881, 10.1016/j.msec.2013.05.023
Chen, 2012, In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition, J. Biomed. Mater Res. B Appl. Biomater., 100, 533, 10.1002/jbm.b.31982
Razavi, 2014, In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants, Appl. Surf. Sci., 313, 60, 10.1016/j.apsusc.2014.05.130
Fischerauer, 2013, In vivo degradation performance of micro-arc-oxidized magnesium implants: a micro-CT study in rats, Acta Biomater., 9, 5411, 10.1016/j.actbio.2012.09.017
Razavi, 2014, Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6), Appl. Surf. Sci., 288, 130, 10.1016/j.apsusc.2013.09.160
Lin, 2014, In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy, Appl. Surf. Sci., 288, 718, 10.1016/j.apsusc.2013.10.113
Tang, 2013, Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment, Appl. Surf. Sci., 264, 816, 10.1016/j.apsusc.2012.10.146
Hornberger, 2012, Biomedical coatings on magnesium alloys - a review, Acta Biomater., 8, 2442, 10.1016/j.actbio.2012.04.012
Witte, 2010, In vivo corrosion and corrosion protection of magnesium alloy LAE442, Acta Biomater., 6, 1792, 10.1016/j.actbio.2009.10.012
Yan, 2010, Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy, Mater. Sci. Eng. C, 30, 740, 10.1016/j.msec.2010.03.007
Sun, 2016, The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model, Mater Sci. Eng. C Mater Biol. Appl., 63, 506, 10.1016/j.msec.2016.03.016
Sun, 2013, In vivo comparative property study of the bioactivity of coated Mg-3Zn-0.8Zr alloy, Mater Sci. Eng. C Mater Biol. Appl., 33, 3263, 10.1016/j.msec.2013.04.006
Wu, 2013, Surface design of biodegradable magnesium alloys — A review, Surf. Coat. Technol., 233, 2, 10.1016/j.surfcoat.2012.10.009
Li, 2010, In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy, J. Mater. Sci., 45, 6038, 10.1007/s10853-010-4688-9
Wong, 2010, A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants, Biomaterials, 31, 2084, 10.1016/j.biomaterials.2009.11.111
Chen, 2011, Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation, Biomed. Mater., 6, 025005, 10.1088/1748-6041/6/2/025005
Gu, 2009, Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan, Biomed. Mater., 4, 044109, 10.1088/1748-6041/4/4/044109
Xu, 2012, Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating, Colloids Surf. B Biointerfaces, 93, 67, 10.1016/j.colsurfb.2011.12.009
Tan, 2014, Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating, Acta Biomater., 10, 2333, 10.1016/j.actbio.2013.12.020
Schaller, 2016, In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone, Mater. Sci. Eng. C, 69, 247, 10.1016/j.msec.2016.06.085