Current status and further development of deterministic lateral displacement for micro-particle separation
Tóm tắt
Deterministic lateral displacement (DLD) is a passive, label-free, continuous-flow method for particle separation. Since its discovery in 2004, it has been widely used in medical tests to separate blood cells, bacteria, extracellular vesicles, DNA, and more. Despite the very simple idea of the DLD method, many details of its mechanism are not yet fully understood and studied. Known analytical equations for the critical diameter of separated particles include only the gap between the columns in the DLD array and the fraction of the column shift. The dependence of the critical diameter on the post diameter, channel height, and a number of other geometric parameters remains unexplored. The problems also include the effect of flow rate and particle concentration on the critical diameter and separation efficiency. At present, DLD devices are mainly developed through numerical simulation and experimental validation. However, it is necessary to find fundamental regularities that would help to improve the separation quantitatively and qualitatively. This review discusses the principle of particle separation, the physical aspects of flow formation, and hydrodynamic forces acting on particles in DLD microchannels. Various analytical models of a viscous flow in an array of cylindrical posts are described. Prospects for further research are outlined.
Tài liệu tham khảo
Zhou J, Mukherjee P, Gao H, Luan Q, Papautsky I (2019) Label-free microfluidic sorting of microparticles. APL Bioeng 3:041504. https://doi.org/10.1063/1.5120501
Lee S, Kim H, Yang S (2023) Microfluidic label-free hydrodynamic separation of blood cells: recent developments and future perspectives. Adv Mater Technol 8:2201425. https://doi.org/10.1002/admt.202201425
Lu N, Tay HM, Petchakup C, He L, Gong L, Maw KK, Leong SY, Lok WW, Ong HB, Guo R, Li K, Ho H, Hou HW (2023) Label-free microfluidic cell sorting and detection for rapid blood analysis. Lab Chip 23:1226–1257. https://doi.org/10.1039/D2LC00904H
Zhang T, Hong Z-Y, Tang S-Y, Li W, Inglis DW, Hosokawa Y, Yalikun Y, Li M (2020) Focusing of sub-micrometer particles in microfluidic devices. Lab Chip 20:35–53. https://doi.org/10.1039/C9LC00785G
Zhang Y, Zheng T, Wang L, Feng L, Wang M, Zhang Z, Feng H (2021) From passive to active sorting in microfluidics: a review. Rev Adv Mater Sci 60:313–324. https://doi.org/10.1515/rams-2020-0044
Bayareh M (2020) An updated review on particle separation in passive microfluidic devices. Chem Eng Process 153:107984. https://doi.org/10.1016/j.cep.2020.107984
Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990. https://doi.org/10.1126/science.1094567
Sturm JC, Cox EC, Comella B, Austin RH (2014) Ratchets in hydrodynamic flow: more than waterwheels. Interface Focus 4:20140054. https://doi.org/10.1098/rsfs.2014.0054
Salafi T, Zhang Y, Zhang Y (2019) A review on deterministic lateral displacement for particle separation and detection. Nano-Micro Lett 11:77. https://doi.org/10.1007/s40820-019-0308-7
Hochstetter A, Vernekar R, Austin RH, Becker H, Beech JP, Fedosov DA, Gompper G, Kim S-C, Smith JT, Stolovitzky G, Tegenfeldt JO, Wunsch BH, Zeming KK, Krüger T, Inglis DW (2020) Deterministic lateral displacement: challenges and perspectives. ACS Nano 14:10784–10795. https://doi.org/10.1021/acsnano.0c05186
Tang H, Niu J, Jin H, Lin S, Cui D (2022) Geometric structure design of passive label-free microfluidic systems for biological micro-object separation. Microsyst Nanoeng 8:62. https://doi.org/10.1038/s41378-022-00386-y
Catarino SO, Rodrigues RO, Pinho D, Miranda JM, Minas G, Lima R (2019) Blood cells separation and sorting techniques of passive microfluidic devices: from fabrication to applications. Micromachines 10:593. https://doi.org/10.3390/mi10090593
Loutherback K, D’Silva J, Liu L, Wu A, Austin RH, Sturm JC (2012) Deterministic separation of cancer cells from blood at 10 mL/min. AIP Adv 2:042107. https://doi.org/10.1007/s10404-010-0635-y
Liu Z, Huang F, Du J, Shu W, Feng H, Xu X, Chen Y (2013) Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure. Biomicrofluidics 7:11801. https://doi.org/10.1063/1.4774308
Liu Z, Zhang W, Huang F, Feng H, Shu W, Xu X, Chen Y (2013) High throughput capture of circulating tumor cells using an integrated microfluidic system. Biosens Bioelectron 47:113–119. https://doi.org/10.1016/j.bios.2013.03.017
Okano H, Konishi T, Suzuki T, Suzuki T, Ariyasu S, Aoki S, Hayase M (2015) Enrichment of circulating tumor cells in tumor-bearing mouse blood by a deterministic lateral displacement microfluidic device. Biomed Microdevices 17:59. https://doi.org/10.1007/s10544-015-9964-7
Au SH, Edd J, Stoddard AE, Wong KH, Fachin F, Maheswaran S, Haber DA, Stott SL, Kapur R, Toner M (2017) Microfluidic isolation of circulating tumor cell clusters by size and asymmetry. Sci Rep 7:2433. https://doi.org/10.1038/s41598-017-01150-3
Zhu S, Jiang F, Han Y, Xiang N, Ni Z (2020) Microfluidics for label-free sorting of rare circulating tumor cells. Analyst 145:7103–7124. https://doi.org/10.1039/D0AN01148G
Bayareh M, Mohammadali R, Usefian A (2021) Cancer cell separation using passive mechanisms: a review. Chall Nano Micro Scale Sci Technol 9:48–62. https://doi.org/10.22111/cnmst.2021.36975.1202
Kang H, Xiong Y, Ma L, Yang T, Xu X (2022) Recent advances in micro-/nanostructure array integrated microfluidic devices for efficient separation of circulating tumor cells. RSC Adv 12:34892–34903. https://doi.org/10.1039/D2RA06339E
Liu X, Ma L, Yan W, Aazmi A, Fang M, Xu X, Kang H, Xu X (2022) A review of recent progress toward the efficient separation of circulating tumor cells via micro-/nanostructured microfluidic chips. View 3:20210013. https://doi.org/10.1002/VIW.20210013
Pariset E, Parent C, Fouillet Y, François B, Verplanck N, Revol-Cavalier F, Thuaire A, Agache V (2018) Separation of biological particles in a modular platform of cascaded deterministic lateral displacement modules. Sci Rep 8:17762. https://doi.org/10.1038/s41598-018-34958-8
Hochstetter A (2020) Lab-on-a-chip technologies for the single cell level: separation, analysis, and diagnostics. Micromachines 11:468. https://doi.org/10.3390/mi11050468
Santana SM, Antonyak MA, Cerione RA, Kirby BJ (2014) Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations. Biomed Microdevices 16:869–877. https://doi.org/10.1007/s10544-014-9891-z
Smith JT, Wunsch BH, Dogra N, Ahsen ME, Lee K, Yadav KK, Weil R, Pereira MA, Patel JV, Duch EA, Papalia JM, Lofaro MF, Gupta M, Tewari AK, Cordon-Cardo C, Stolovitzky G, Gifford SM (2018) Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples. Lab Chip 18(24):3913–3925. https://doi.org/10.1039/C8LC01017J
Meng Y, Asghari M, Aslan MK, Yilmaz A, Mateescu B, Stavrakis S, deMello AJ (2021) Microfluidics for extracellular vesicle separation and mimetic synthesis: recent advances and future perspectives. Chem Eng J 404:126110. https://doi.org/10.1016/j.cej.2020.126110
Havers M, Broman A, Lenshof A, Laurell T (2023) Advancement and obstacles in microfluidics-based isolation of extracellular vesicles. Anal Bioanal Chem 415:1265–1285. https://doi.org/10.1007/s00216-022-04362-3
Wunsch BH, Smith JT, Giford SM, Wang C, Brink M, Bruce RL, Austin RH, Stolovitzky G, Astier Y (2016) Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20nm. Nat Nanotechnol 11:936–940. https://doi.org/10.1038/nnano.2016.134
Xie Y, Rufo J, Zhong R, Rich J, Li P, Leong KW, Huang TJ (2020) Microfluidic isolation and enrichment of nanoparticles. ACS Nano 14:16220–16240. https://doi.org/10.1021/acsnano.0c06336
Martel JM, Toner M (2014) Inertial focusing in microfluidics. Ann Rev Biomed Eng 16:371–396. https://doi.org/10.1146/annurev-bioeng-121813-120704
Dincau BM, Aghilinejad A, Hammersley T, Chen X, Kim J-H (2018) Deterministic lateral displacement (DLD) in the high Reynolds number regime: high-throughput and dynamic separation characteristics. Microfluid Nanofluid 22:59. https://doi.org/10.1146/10.1007/s10404-018-2078-9
Inglis DW, Davis JA, Austin RH, Sturm JC (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–658. https://doi.org/10.1039/B515371A
Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci USA 103:14779–14784. https://doi.org/10.1073/pnas.0605967103
Davis JA (2008) Microfluidic separation of blood components through deterministic lateral displacement. Ph.D. Thesis, Princeton University
Zeming KK, Salafi T, Chen C-H, Zhang Y (2016) “Asymmetrical deterministic lateral displacement gaps for dual functions of enhanced separation and throughput of red blood cells. Sci Rep 6:22934. https://doi.org/10.1038/srep22934
Koens L, Vernekar R, Krueger T, Lisicki M, Inglis DW (2023) The slow viscous flow around doubly-periodic arrays of infinite slender cylinders. arXiv:2301.12774. https://doi.org/10.48550/arXiv.2301.12774
Zeming KK, Ranjan S, Zhang Y (2013) Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device. Nat Commun 4:1625. https://doi.org/10.1038/ncomms2653
Zhang Z, Henry E, Gompper G, Fedosov DA (2015) Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes. J Chem Phys 143:243145. https://doi.org/10.1063/1.4937171
Loutherback K, Chou KS, Newman J, Puchalla J, Austin RH, Sturm JC (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluid 9:1143–1149. https://doi.org/10.1007/s10404-010-0635-y
Xiang N, Wang J, Li Q, Han Y, Huang D, Ni Z (2019) Precise size-based cell separation via the coupling of inertial microfluidics and deterministic lateral displacement. Anal Chem 91:10328–10334. https://doi.org/10.1021/acs.analchem.9b02863
Dincau BM, Aghilinejad A, Chen X, Moon SY, Kim JH (2018) Vortex-free high-Reynolds deterministic lateral displacement (DLD) via airfoil pillars. Microfluid Nanofluid 22:137. https://doi.org/10.1007/s10404-018-2160-3
Ranjan S, Zeming KK, Jureen R, Fisher D, Zhang Y (2014) DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles. Lab Chip 14:4250–4262. https://doi.org/10.1039/C4LC00578C
Zeming KK, Sato Y, Yin L, Huang N-J, Wong LH, Loo HL, Lim YB, Lim CT, Chen J, Preiser PR, Han J (2020) Microfluidic label-free bioprocessing of human reticulocytes from erythroid culture. Lab Chip 20:3445–3460. https://doi.org/10.1039/C9LC01128E
Liu Z, Huang Y, Liang W, Bai J, Feng H, Fang Z, Tian G, Zhu Y, Zhang H, Wang Y, Liu A, Chen Y (2021) Cascaded filter deterministic lateral displacement microchips for isolation and molecular analysis of circulating tumor cells and fusion cells. Lab Chip 21:2881–2891. https://doi.org/10.1039/D1LC00360G
Hyun J-C, Hyun J, Wang S, Yang S (2016) Improved pillar shape for deterministic lateral displacement separation method to maintain separation efficiency over a long period of time. Sep Purif Technol 172:258–267. https://doi.org/10.1016/j.seppur.2016.08.023
Bae JH, Zhbanov A, Yang S (2022) Effect of channel height on the critical particle diameter in a deterministic lateral device. Micro Nano Syst Lett 10:20. https://doi.org/10.1186/s40486-022-00163-6
Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14:2739–2761. https://doi.org/10.1039/C4LC00128A
Nazari N, Yun W, Kovscek AR (2023) The motion of long bubbles in microchannels using a meter-long, rectangular capillary on a chip. J Colloid Interface Sci 638:149–160. https://doi.org/10.1016/j.jcis.2023.01.073
Zhang J, Li W, Li M, Alici G, Nguyen N-T (2014) Particle inertial focusing and its mechanism in a serpentine microchannel. Microfluid Nanofluid 17:305–316. https://doi.org/10.1007/s10404-013-1306-6
White FM, Majdalani J (2022) Viscous fluid flow, 4th edn. McGraw-Hill Companies Inc, New York
Fukuchi T (2011) Numerical calculation of fully-developed laminar flows in arbitrary cross-sections using finite difference method. AIP Adv 1:042109. https://doi.org/10.1063/1.3652881
Happel J (1959) Viscous flow relative to arrays of cylinders. AIChE J 5:174–177. https://doi.org/10.1002/aic.690050211
Sangani AS, Acrivos A (1982) Slow flow past periodic arrays of cylinders with application to heat transfer. Int J Multiph Flow 8:193–206. https://doi.org/10.1016/0301-9322(82)90029-5
Beech JP (2011) Microfuidics separation and analysis of biological particles. Lund University: Lund. https://lup.lub.lu.se/record/2198801
Holm S (2018) Microfuidic cell and particle sorting using deterministic lateral displacement. Department of physics. Lund University, Lund. https://lup.lub.lu.se/record/bc57504b-5349-4a1a-8283-5eee9343c80e
Kim S-C, Wunsch BH, Hu H, Smith JT, Austin RH, Stolovitzky G (2017) Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays. Proc Nat Acad Sci USA 114:E5034–E5041. https://doi.org/10.1073/pnas.1706645114