Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aimanova, 2006, Expression of Cry1Ac cadherin receptors in insect midgut and cell lines, J. Invertebr. Pathol., 92, 178, 10.1016/j.jip.2006.04.011
Aronson, 1993, The two faces of Bacillus thuringiensis: insecticidal proteins and post-exponential survival, Mol. Microbiol., 7, 489, 10.1111/j.1365-2958.1993.tb01139.x
Aronson, 2002, Sporulation and δ-endotoxin synthesis by Bacillus thuringiensis, Cell. Mol. Life Sci., 59, 417, 10.1007/s00018-002-8434-6
Aronson, 2001, Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action, FEMS Microbiol. Lett., 195, 1, 10.1111/j.1574-6968.2001.tb10489.x
Aronson, 1986, Bacillus thuringiensis and related insect pathogens, Microbiol. Rev., 50, 1, 10.1128/MMBR.50.1.1-24.1986
Aronson, 1999, Aggregation of Bacillus thuringiensis Cry1A toxins upon binding to target insect larval midgut vesicles, Appl. Environ. Microbiol., 65, 2503, 10.1128/AEM.65.6.2503-2507.1999
Baxter, 2005, Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella, Insect Mol. Biol., 14, 327, 10.1111/j.1365-2583.2005.00563.x
Baxter, 2008, Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth Plutella xylostella, Insect Biochem. Mol. Biol., 38, 125, 10.1016/j.ibmb.2007.09.014
Becker, 2000, Bacterial control of vector-mosquitoes and blackflies, 383
Beegle, 1992, History of Bacillus thuringiensis Berliner research and development, Can. Entomol., 124, 587, 10.4039/Ent124587-4
Bellier, 2009, Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans, PLoS Pathog., 5, e1000689, 10.1371/journal.ppat.1000689
Bischof, 2008, Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo, PLoS Pathog., 4, e1000176, 10.1371/journal.ppat.1000176
Bravo, 2008, How to cope with insect resistance to Bt toxins?, Trends Biotechnol., 26, 573, 10.1016/j.tibtech.2008.06.005
Bravo, 1992, Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects, J. Invertebr. Pathol., 60, 237, 10.1016/0022-2011(92)90004-N
Bravo, 2002, N-terminal activation is an essential early step in the mechanism of action of the Bacillus thuringiensis Cry1Ac insecticidal toxin, J. Biol. Chem., 277, 23985, 10.1074/jbc.C200263200
Bravo, 2004, Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains, Biochim. Biophys. Acta, 1667, 38, 10.1016/j.bbamem.2004.08.013
Bravo, 2007, Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control, Toxicon, 49, 423, 10.1016/j.toxicon.2006.11.022
Bravo, 2011, Bacillus thuringiensis: a story of a successful bioinsecticide, Insect Biochem. Mol. Biol., 41, 423, 10.1016/j.ibmb.2011.02.006
Bulla, 1980, Ultrastructure, physiology, and biochemistry of Bacillus thuringiensis, Crit. Rev. Microbiol., 8, 147, 10.3109/10408418009081124
Butko, 2003, Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses, Appl. Environ. Microbiol., 69, 2415, 10.1128/AEM.69.5.2415-2422.2003
Cancino-Rodezno, 2010, The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis, Insect Biochem. Mol. Biol., 40, 58, 10.1016/j.ibmb.2009.12.010
Cannon, 2000, Bt transgenic crops: risks and benefits, Integr. Pest Manage. Rev., 5, 151, 10.1023/A:1011347122894
Carlton, 1990, Biology of Bacillus thuringiensis: a bacterial insecticide, Plant Biol., 11, 263
Carroll, 1993, An analysis of Bacillus thuringiensis δ-endotoxin action on insect midgut membrane permeability using a light-scattering assay, Eur. J. Biochem., 214, 771, 10.1111/j.1432-1033.1993.tb17979.x
Chattopadhyay, 2004, Bacterial insecticidal toxins, Crit. Rev. Microbiol., 30, 33, 10.1080/10408410490270712
Chen, 1993, Site-directed mutations in a highly conserved region of Bacillus thuringiensis δ-endotoxin affect inhibition of short circuit current across Bombyx mori midguts, Proc. Natl. Acad. Sci. USA, 90, 9041, 10.1073/pnas.90.19.9041
Chen, 2010, WWP-1 is a novel modulator of the DAF-2 insulin-like signaling network involved in pore-forming toxin cellular defenses in Caenorhabditis elegans, PLoS ONE, 5, e9494, 10.1371/journal.pone.0009494
Cooper, 1994, Bacillus thuringiensis toxins and mode of action, Agric. Ecosyst. Environ., 49, 21, 10.1016/0167-8809(94)90016-7
Cooper, 1998, Bacillus thuringiensis Cry1Ac toxin interaction with Manduca sexta aminopeptidase N in a model membrane environment, Biochem. J., 333, 677, 10.1042/bj3330677
Coux, 2001, Role of interdomain salt bridges in the pore-forming ability of the Bacillus thuringiensis toxins Cry1Aa and Cry1Ac, J. Biol. Chem., 276, 35546, 10.1074/jbc.M101887200
Crickmore, 1998, Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins, Microbiol. Mol. Biol. Rev., 62, 807, 10.1128/MMBR.62.3.807-813.1998
de Maagd, 2003, Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria, Annu. Rev. Genet., 37, 409, 10.1146/annurev.genet.37.110801.143042
Dean, 1996, Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis − a minireview, Gene, 179, 111, 10.1016/S0378-1119(96)00442-8
Dorsch, 2002, Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of Bt-R1 in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis, Insect Biochem. Mol. Biol., 32, 1025, 10.1016/S0965-1748(02)00040-1
English, 1992, Mode of action of delta-endotoxins from Bacillus thuringiensis: a comparison with other bacterial toxins, Insect Biochem. Mol. Biol., 22, 1, 10.1016/0965-1748(92)90093-T
English, 1994, Mode of action of CryIIA: a Bacillus thuringiensis delta-endotoxin, Insect Biochem. Mol. Biol., 24, 1025, 10.1016/0965-1748(94)90140-6
Estruch, 1996, Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects, Proc. Natl. Acad. Sci. USA, 93, 5389, 10.1073/pnas.93.11.5389
Fabrick, 2009, A novel Tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin, J. Biol. Chem., 284, 18401, 10.1074/jbc.M109.001651
Federici, 2005, Insecticidal bacteria: an overwhelming success for invertebrate pathology, J. Invertebr. Pathol., 89, 30, 10.1016/j.jip.2005.06.007
Federici, 2010, Overview of the basic biology of Bacillus thuringiensis with emphasis on genetic engineering of bacterial larvicides for mosquito control, Open Toxinol. J., 3, 83, 10.2174/1875414701003010083
Ferré, 2008, Insecticidal genetically modified crops and insect resistance management (IRM), 41
Flannagan, 2005, Identification, cloning and expression of a Cry1Ab cadherin receptor from European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae), Insect Biochem. Mol. Biol., 35, 33, 10.1016/j.ibmb.2004.10.001
Fortier, 2005, Differential effects of ionic strength, divalent cations and pH on the pore-forming activity of Bacillus thuringiensis insecticidal toxins, J. Membr. Biol., 208, 77, 10.1007/s00232-005-0820-1
Fortier, 2007, Effect of insect larval midgut proteases on the activity of Bacillus thuringiensis Cry toxins, Appl. Environ. Microbiol., 73, 6208, 10.1128/AEM.01188-07
Fortier, 2007, Kinetics of pore formation by the Bacillus thuringiensis toxin Cry1Ac, Biochim. Biophys. Acta, 1768, 1291, 10.1016/j.bbamem.2007.02.013
Franklin, 2009, Modified Bacillus thuringiensis toxins and a hybrid B. thuringiensis strain counter greenhouse-selected resistance in Trichoplusia ni, Appl. Environ. Microbiol., 75, 5739, 10.1128/AEM.00664-09
Gahan, 2001, Identification of a gene associated with Bt resistance in Heliothis virescens, Science, 293, 857, 10.1126/science.1060949
Gahan, 2010, An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin, PLoS Genet., 6, e1001248, 10.1371/journal.pgen.1001248
Gazit, 1995, The assembly and organization of the α5 and α7 helices from the pore-forming domain of Bacillus thuringiensis δ-endotoxin. Relevance to a functional model, J. Biol. Chem., 270, 2571, 10.1074/jbc.270.6.2571
Gill, 2002, Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1, Insect Mol. Biol., 11, 619, 10.1046/j.1365-2583.2002.00373.x
Gill, 1992, The mode of action of Bacillus thuringiensis endotoxins, Annu. Rev. Entomol., 37, 615, 10.1146/annurev.en.37.010192.003151
Girard, 2009, Helix α4 of the Bacillus thuringiensis Cry1Aa toxin plays a critical role in the postbinding steps of pore formation, Appl. Environ. Microbiol., 75, 359, 10.1128/AEM.01930-08
Gómez, 2001, Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display, J. Biol. Chem., 276, 28906, 10.1074/jbc.M103007200
Gómez, 2002, Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin, FEBS Lett., 513, 242, 10.1016/S0014-5793(02)02321-9
Gómez, 2006, Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta, J. Biol. Chem., 281, 34032, 10.1074/jbc.M604721200
Gómez, 2007, Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis, Peptides, 28, 169, 10.1016/j.peptides.2006.06.013
González-Cabrera, 2006, Toxicity and mode of action of Bacillus thuringiensis Cry proteins in the Mediterranean corn borer, Sesamia nonagrioides (Lefebvre), Appl. Environ. Microbiol., 72, 2594, 10.1128/AEM.72.4.2594-2600.2006
Griffitts, 2005, Glycolipids as receptors for Bacillus thuringiensis crystal toxin, Science, 307, 922, 10.1126/science.1104444
Grochulski, 1995, Bacillus thuringiensis CrylA(a) insecticidal toxin: crystal structure and channel formation, J. Mol. Biol., 254, 447, 10.1006/jmbi.1995.0630
Groulx, 2011, Single molecule fluorescence study of the Bacillus thuringiensis toxin Cry1Aa reveals tetramerization, J. Biol. Chem., 286, 42274, 10.1074/jbc.M111.296103
Guihard, 2000, Kinetic properties of the channels formed by the Bacillus thuringiensis insecticidal crystal protein Cry1C in the plasma membrane of Sf9 cells, J. Membr. Biol., 175, 115, 10.1007/s002320001060
Harvey, 1983, Potassium ion transport ATPase in insect epithelia, J. Exp. Biol., 106, 91, 10.1242/jeb.106.1.91
Harvey, 1998, H+ V-ATPases energize animal plasma membranes for secretion and absorption of ions and fluids, Am. Zool., 38, 426, 10.1093/icb/38.3.426
Herrero, 2004, Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae, Biochem. J., 384, 507, 10.1042/BJ20041094
Higuchi, 2007, Binding of Bacillus thuringiensis Cry1A toxins to brush border membrane vesicles of midgut from Cry1Ac susceptible and resistant Plutella xylostella, Comp. Biochem. Physiol. B—Biochem. Mol. Biol., 147, 716, 10.1016/j.cbpb.2007.04.013
Himeno, 1987, Mechanism of action of delta-endotoxin from Bacillus thuringiensis, J. Toxicol. Toxin Rev., 6, 45, 10.3109/15569548709053861
Hodgman, 1990, Models for the structure and function of the Bacillus thuringiensis δ-endotoxins determined by compilational analysis, DNA Seq., 1, 97, 10.3109/10425179009016037
Höfte, 1989, Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol. Rev., 53, 242, 10.1128/MMBR.53.2.242-255.1989
Honée, 1993, The mode of action of Bacillus thuringiensis crystal proteins, Entomol. Exp. Appl., 69, 145, 10.1111/j.1570-7458.1993.tb01737.x
Hua, 2004, Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity, J. Biol. Chem., 279, 28051, 10.1074/jbc.M400237200
Hua, 2004, Fluorescent-based assays establish Manduca sexta Bt-R1a cadherin as a receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells, Insect Biochem. Mol. Biol., 34, 193, 10.1016/j.ibmb.2003.10.006
Huffman, 2004, Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins, Proc. Natl. Acad. Sci. USA, 101, 10995, 10.1073/pnas.0404073101
Ihara, 2008, Study of the irreversible binding of Bacillus thuringiensis Cry1Aa to brush border membrane vesicles from Bombyx mori midgut, J. Invertebr. Pathol., 98, 177, 10.1016/j.jip.2008.02.007
James, C., 2010. Global Status of Commercialized Biotech/GM Crops: 2010. International Service for the Acquisition of Agri-Biotech Applications. <http://www.isaaa.org/resources/publications/briefs/42/default.asp> (accessed 29.02.12).
Jiménez-Juárez, 2008, The pre-pore from Bacillus thuringiensis Cry1Ab toxin is necessary to induce insect death in Manduca sexta, Peptides, 29, 318, 10.1016/j.peptides.2007.09.026
Jurat-Fuentes, 2006, Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae, J. Invertebr. Pathol., 92, 166, 10.1016/j.jip.2006.01.010
Jurat-Fuentes, 2006, The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins, Biochemistry, 45, 9688, 10.1021/bi0606703
Kao, 2011, Global functional analyses of cellular responses to pore-forming toxins, PLoS Pathog., 7, e1001314, 10.1371/journal.ppat.1001314
Katayama, 2007, Parasporin-1, a novel cytotoxic protein from Bacillus thuringiensis, induces Ca2+ influx and a sustained elevation of the cytoplasmic Ca2+ concentration in toxin-sensitive cells, J. Biol. Chem., 282, 7742, 10.1074/jbc.M611382200
Kayalar, 1986, Membrane action of colicin E1: detection by the release of carboxyfluorescein and calcein from liposomes, Biochim. Biophys. Acta, 860, 51, 10.1016/0005-2736(86)90497-9
Khajuria, 2011, Identification of a novel aminopeptidase P-like gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis), PLoS ONE, 6, e23983, 10.1371/journal.pone.0023983
Kirouac, 2002, Amino acid and divalent ion permeability of the pores formed by the Bacillus thuringiensis toxins Cry1Aa and Cry1Ac in insect midgut brush border membrane vesicles, Biochim. Biophys. Acta, 1561, 171, 10.1016/S0005-2736(02)00342-5
Kirouac, 2003, Analysis of the properties of Bacillus thuringiensis insecticidal toxins using a potential-sensitive fluorescent probe, J. Membr. Biol., 196, 51, 10.1007/s00232-003-0624-0
Kirouac, 2006, A mechanical force contributes to the “osmotic swelling’’ of brush-border membrane vesicles, Biophys. J., 91, 3301, 10.1529/biophysj.106.088641
Kirouac, 2006, Protease inhibitors fail to prevent pore formation by the activated Bacillus thuringiensis toxin Cry1Aa in insect brush border membrane vesicles, Appl. Environ. Microbiol., 72, 506, 10.1128/AEM.72.1.506-515.2006
Knowles, 1994, Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins, 275, 10.1016/S0065-2806(08)60085-5
Knowles, 1993, The crystal δ-endotoxins of Bacillus thuringiensis: models for their mechanism of action on the insect gut, Bioessays, 15, 469, 10.1002/bies.950150706
Knowles, 1987, Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity, Biochim. Biophys. Acta, 924, 509, 10.1016/0304-4165(87)90167-X
Kumar, 1999, Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis δ-endotoxin, J. Bacteriol., 181, 6103, 10.1128/JB.181.19.6103-6107.1999
Lacey, 1986, Microbial control of black flies and mosquitoes, Annu. Rev. Entomol., 31, 265, 10.1146/annurev.en.31.010186.001405
Lebel, 2009, Mutations in domain I interhelical loops affect the rate of pore formation by the Bacillus thuringiensis Cry1Aa toxin in insect midgut brush border membrane vesicles, Appl. Environ. Microbiol., 75, 3842, 10.1128/AEM.02924-08
Lecadet, 1996, La lutte biologique contre les insectes: une vieille histoire très actuelle, Ann. Inst. Pasteur Actualités, 7, 207, 10.1016/S0924-4204(97)86390-1
Leonardi, 2007, Leucine transport is affected by Bacillus thuringiensis Cry1 toxins in brush border membrane vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) midgut, J. Membr. Biol., 214, 157, 10.1007/s00232-006-0042-1
Liang, 1995, Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity, J. Biol. Chem., 270, 24719, 10.1074/jbc.270.42.24719
Liebig, 1995, Quantification of the effect of Bacillus thuringiensis toxins on short-circuit current in the midgut of Bombyx mori, J. Insect Physiol., 41, 17, 10.1016/0022-1910(94)00093-V
Likitvivatanavong, 2006, Asn183 in α5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin, Arch. Biochem. Biophys., 445, 46, 10.1016/j.abb.2005.11.007
Likitvivatanavong, 2011, Multiple receptors as targets of Cry toxins in mosquitoes, J. Agric. Food Chem., 59, 2829, 10.1021/jf1036189
Lorence, 1995, δ-Endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers, FEBS Lett., 360, 217, 10.1016/0014-5793(95)00092-N
Luo, 1997, The Heliothis virescens 170 kDa aminopeptidase functions as ’’Receptor A’’ by mediating specific Bacillus thuringiensis Cry1A δ-endotoxin binding and pore formation, Insect Biochem. Mol. Biol., 27, 735, 10.1016/S0965-1748(97)00052-0
Luo, 1999, Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry1 δ-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda, Appl. Environ. Microbiol., 65, 457, 10.1128/AEM.65.2.457-464.1999
Lüthy, 1981, The entomocidal toxins of Bacillus thuringiensis, Pharmacol. Ther., 13, 257, 10.1016/0163-7258(81)90003-6
Masson, 2004, A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the western corn rootworm Diabrotica virgifera virgifera LeConte forms ion channels in lipid membranes, Biochemistry, 43, 12349, 10.1021/bi048946z
Menestrina, 1988, Escherichia coli hemolysin permeabilizes small unilamellar vesicles loaded with calcein by a single-hit mechanism, FEBS Lett., 232, 217, 10.1016/0014-5793(88)80420-4
Menestrina, 1989, Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation, Biophys. J., 55, 393, 10.1016/S0006-3495(89)82833-4
Menestrina, 1991, Lipid interaction of Pseudomonas aeruginosa exotoxin A. Acid-triggered permeabilization and aggregation of lipid vesicles, Biophys. J., 60, 1388, 10.1016/S0006-3495(91)82176-2
Monette, 1994, Calcium-activated potassium channels in the UCR-SE-1a lepidopteran cell line from the beet armyworm (Spodoptera exigua), J. Insect Physiol., 40, 273, 10.1016/0022-1910(94)90067-1
Monette, 1997, Interaction between calcium ions and Bacillus thuringiensis toxin activity against Sf9 cells (Spodoptera frugiperda, Lepidoptera), Appl. Environ. Microbiol., 63, 440, 10.1128/AEM.63.2.440-447.1997
Morin, 2003, Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm, Proc. Natl. Acad. Sci. USA, 100, 5004, 10.1073/pnas.0831036100
Muñoz-Garay, 2006, Permeability changes of Manduca sexta midgut brush border membranes induced by oligomeric structures of different Cry toxins, J. Membr. Biol., 212, 61, 10.1007/s00232-006-0003-8
Muñoz-Garay, 2009, Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects, Biochim. Biophys. Acta, 1788, 2229, 10.1016/j.bbamem.2009.06.014
Muñoz-Garay, 2009, Oligomerization of Cry11Aa from Bacillus thuringiensis has an important role in toxicity against Aedes aegypti, Appl. Environ. Microbiol., 75, 7548, 10.1128/AEM.01303-09
Nagamatsu, 1998, Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal Cry1A(a) toxin, Biosci. Biotechnol. Biochem., 62, 727, 10.1271/bbb.62.727
Nagamatsu, 1999, The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal Cry1Aa toxin, FEBS Lett., 460, 385, 10.1016/S0014-5793(99)01327-7
Navon, 2000, Bacillus thuringiensis insecticides in crop protection − reality and prospects, Crop Prot., 19, 669, 10.1016/S0261-2194(00)00089-2
Obata, 2009, Analysis of the region for receptor binding and triggering of oligomerization on Bacillus thuringiensis Cry1Aa toxin, FEBS J., 276, 5949, 10.1111/j.1742-4658.2009.07275.x
Ohba, 2009, Parasporin, a new anticancer protein group from Bacillus thuringiensis, Anticancer Res., 29, 427
Pacheco, 2009, Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “ping pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors, J. Biol. Chem., 284, 32750, 10.1074/jbc.M109.024968
Pacheco, 2009, Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation, Peptides, 30, 583, 10.1016/j.peptides.2008.08.006
Padilla, 2006, Role of tryptophan residues in toxicity of Cry1Ab toxin from Bacillus thuringiensis, Appl. Environ. Microbiol., 72, 901, 10.1128/AEM.72.1.901-907.2006
Pardo-López, 2006, Structural and functional analysis of the pre-pore and membrane-inserted pore of Cry1Ab toxin, J. Invertebr. Pathol., 92, 172, 10.1016/j.jip.2006.02.008
Pardo-López, 2009, Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis, Peptides, 30, 589, 10.1016/j.peptides.2008.07.027
Pardo-López, L., Soberón, M., Bravo, A., in press. Bacillus thuringiensis insecticidal 3-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. http://dx.doi.org/10.1111/j.1574-6976.2012.00341.x.
Pérez, 2005, Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor, Proc. Natl. Acad. Sci. USA, 102, 18303, 10.1073/pnas.0505494102
Pérez, 2007, Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure, Cell. Microbiol., 9, 2931, 10.1111/j.1462-5822.2007.01007.x
Peyronnet, 1997, Effect of Bacillus thuringiensis toxins on the membrane potential of lepidopteran insect midgut cells, Appl. Environ. Microbiol., 63, 1679, 10.1128/AEM.63.5.1679-1684.1997
Pigott, 2007, Role of receptors in Bacillus thuringiensis crystal toxin activity, Microbiol. Mol. Biol. Rev., 71, 255, 10.1128/MMBR.00034-06
Potvin, 1998, Cry1Ac, a Bacillus thuringiensis toxin, triggers extracellular Ca2+ influx and Ca2+ release from intracellular stores in Cf1 cells (Choristoneura fumiferana, Lepidoptera), J. Exp. Biol., 201, 1851, 10.1242/jeb.201.12.1851
Puntheeranurak, 2004, Ion channels formed in planar lipid bilayers by the dipteran-specific Cry4B Bacillus thuringiensis toxin and its α1-α5 fragment, Mol. Membr. Biol., 21, 67, 10.1080/09687680310001625792
Rajagopal, 2002, Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor, J. Biol. Chem., 277, 46849, 10.1074/jbc.C200523200
Rajamohan, 1998, Bacillus thuringiensis insecticidal proteins: molecular mode of action, Prog. Nucleic Acid Res. Mol. Biol., 60, 1, 10.1016/S0079-6603(08)60887-9
Rausell, 2004, Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say), Biochim. Biophys. Acta, 1660, 99, 10.1016/j.bbamem.2003.11.004
Rausell, 2004, Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate, Biochemistry, 43, 166, 10.1021/bi035527d
Rausell, 2004, Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane-inserted pore channel, J. Biol. Chem., 279, 55168, 10.1074/jbc.M406279200
Rausell, 2007, A membrane associated metalloprotease cleaves Cry3Aa Bacillus thuringiensis toxin reducing pore formation in Colorado potato beetle brush border membrane vesicles, Biochim. Biophys. Acta, 1768, 2293, 10.1016/j.bbamem.2007.06.014
Rogoff, 1969, Bacillus thuringiensis: microbiological considerations, Annu. Rev. Microbiol., 23, 357, 10.1146/annurev.mi.23.100169.002041
Sacchi, 1986, Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells, FEBS Lett., 204, 213, 10.1016/0014-5793(86)80814-6
Sanahuja, 2011, Bacillus thuringiensis: a century of research, development and commercial applications, Plant Biotechnol. J., 9, 283, 10.1111/j.1467-7652.2011.00595.x
Sanchis, 2011, From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review, Agron. Sustain. Dev., 31, 217, 10.1051/agro/2010027
Sanchis, 2008, Bacillus thuringiensis: applications in agriculture and insect resistance management. A review, Agron. Sustain. Dev., 28, 11, 10.1051/agro:2007054
Sangadala, 1994, A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb+–K+ efflux in vitro, J. Biol. Chem., 269, 10088, 10.1016/S0021-9258(17)36993-4
Sauka, 2008, Bacillus thuringiensis: generalidades. Un acercamiento a su empleo en el biocontrol de insectos lepidópteros que son plagas agrícolas, Rev. Argent. Microbiol., 40, 124
Schnepf, 1998, Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol. Mol. Biol. Rev., 62, 775, 10.1128/MMBR.62.3.775-806.1998
Schwartz, 2000, Membrane permeabilisation by Bacillus thuringiensis toxins: protein insertion and pore formation, 199
Schwartz, 1991, Early response of cultured lepidopteran cells to exposure to δ-endotoxin from Bacillus thuringiensis: involvement of calcium and anionic channels, Biochim. Biophys. Acta, 1065, 250, 10.1016/0005-2736(91)90237-3
Schwartz, 1993, Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation- and anion-selective channels in planar lipid bilayers, J. Membr. Biol., 132, 53, 10.1007/BF00233051
Schwartz, 1997, Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering, FEBS Lett., 410, 397, 10.1016/S0014-5793(97)00626-1
Schwartz, 1997, Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors, FEBS Lett., 412, 270, 10.1016/S0014-5793(97)00801-6
Schwartz, 2001, Permeabilization of model lipid membranes by Bacillus sphaericus mosquitocidal binary toxin and its individual components, J. Membr. Biol., 184, 171, 10.1007/s00232-001-0086-1
Schwarz, 1990, Pore formation kinetics in membranes, determined from the release of marker molecules out of liposomes or cells, Biophys. J., 58, 577, 10.1016/S0006-3495(90)82401-2
Schwarzenbach, 1969
Shelton, 2002, Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants, Annu. Rev. Entomol., 47, 845, 10.1146/annurev.ento.47.091201.145309
Sivakumar, 2007, Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac, J. Biol. Chem., 282, 7312, 10.1074/jbc.M607442200
Slatin, 1990, δ-Endotoxins form cation-selective channels in planar lipid bilayers, Biochem. Biophys. Res. Commun., 169, 765, 10.1016/0006-291X(90)90397-6
Soberón, 2007, Mode of action of mosquitocidal Bacillus thuringiensis toxins, Toxicon, 49, 597, 10.1016/j.toxicon.2006.11.008
Soberón, 2007, Engineering modified Bt toxins to counter insect resistance, Science, 318, 1640, 10.1126/science.1146453
Soberón, 2009, Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells?, Cell. Mol. Life Sci., 66, 1337, 10.1007/s00018-008-8330-9
Soberón, 2010, Pore formation by Cry toxins, 127
Tabashnik, 2011, Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance, Nat. Biotechnol., 29, 1128, 10.1038/nbt.1988
Tanaka, 2012, Response of midgut epithelial cells to Cry1Aa is toxin-dependent and depends on the interplay between toxic action and the host apoptotic response, FEBS J., 279, 1071, 10.1111/j.1742-4658.2012.08499.x
Thiéry, 1996, Applications de Bacillus thuringiensis et de B. sphaericus dans la démoustication et la lutte contre les vecteurs de maladies tropicales, Ann. Inst. Pasteur Actualités, 7, 247, 10.1016/S0924-4204(97)86393-7
Tigue, 2001, The α-helix 4 residue, Asn135, is involved in the oligomerization of Cry1Ac1 and Cry1Ab5 Bacillus thuringiensis toxins, Appl. Environ. Microbiol., 67, 5715, 10.1128/AEM.67.12.5715-5720.2001
Tran, 2001, Differential effects of pH on the pore-forming properties of Bacillus thuringiensis insecticidal crystal toxins, Appl. Environ. Microbiol., 67, 4488, 10.1128/AEM.67.10.4488-4494.2001
Tsuda, 2003, Cytotoxic activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with cadherin-like Cry receptor gene of Bombyx mori (silkworm), Biochem. J., 369, 697, 10.1042/bj20021401
Vachon, 1995, Ionic permeabilities induced by Bacillus thuringiensis in Sf9 cells, J. Membr. Biol., 148, 57, 10.1007/BF00234156
Vachon, 2002, Role of helix 3 in pore formation by the Bacillus thuringiensis insecticidal toxin Cry1Aa, Biochemistry, 41, 6178, 10.1021/bi011572e
Vachon, 2004, Helix 4 mutants of the Bacillus thuringiensis insecticidal toxin Cry1Aa display altered pore-forming abilities, Appl. Environ. Microbiol., 70, 6123, 10.1128/AEM.70.10.6123-6130.2004
Vachon, 2006, Influence of the biophysical and biochemical environment on the kinetics of pore formation by Cry toxins, J. Invertebr. Pathol., 92, 160, 10.1016/j.jip.2006.06.001
van Frankenhuyzen, 2000, Application of Bacillus thuringiensis in forestry, 371
van Frankenhuyzen, 2009, Insecticidal activity of Bacillus thuringiensis crystal proteins, J. Invertebr. Pathol., 101, 1, 10.1016/j.jip.2009.02.009
Villalon, 1998, Video imaging analysis of the plasma membrane permeabilizing effects of Bacillus thuringiensis insecticidal toxins in Sf9 cells, Biochim. Biophys. Acta, 1368, 27, 10.1016/S0005-2736(97)00184-3
Wei, 2003, Bacillus thuringiensis crystal proteins that target nematodes, Proc. Natl. Acad. Sci. USA, 100, 2760, 10.1073/pnas.0538072100
Whalon, 2003, Bt: mode of action and use, Arch. Insect Biochem. Physiol., 54, 200, 10.1002/arch.10117
Whiteley, 1986, The molecular biology of parasporal crystal body formation in Bacillus thuringiensis, Annu. Rev. Microbiol., 40, 549, 10.1146/annurev.mi.40.100186.003001
Wolfersberger, 1991, Inhibition of potassium gradient driven phenylalanine uptake in larval Lymantria dispar midgut by two Bacillus thuringiensis δ-endotoxins correlates with the activity of the toxins as gypsy moth larvicides, J. Exp. Biol., 161, 519, 10.1242/jeb.161.1.519
Xiang, 2009, N546 in β18-β19 loop is important for binding and toxicity of the Bacillus thuringiensis Cry1Ac toxin, J. Invertebr. Pathol., 101, 119, 10.1016/j.jip.2009.04.004
Xu, 2005, Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera, Appl. Environ. Microbiol., 71, 948, 10.1128/AEM.71.2.948-954.2005
Zavala, 2011, Domains II and III of Bacillus thuringiensis Cry1Ab toxin remain exposed to the solvent after insertion of part of domain I into the membrane, J. Biol. Chem., 286, 19109, 10.1074/jbc.M110.202994
Zhang, 2005, Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells, Cell Death Differ., 12, 1407, 10.1038/sj.cdd.4401675
Zhang, 2006, A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis, Proc. Natl. Acad. Sci. USA, 103, 9897, 10.1073/pnas.0604017103
Zhang, 2009, Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin, Insect Biochem. Mol. Biol., 39, 421, 10.1016/j.ibmb.2009.04.003