Current challenges of high-solid anaerobic digestion and possible measures for its effective applications: a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gallucci T, Lagioia G, Dimitrova V. Opportunities for biofuel sustainable development in Bulgaria. Int J Sustain Econ. 2010;2(3):241–57.
Hoffert M, et al. Advanced technology paths to global climate stability: energy for a greenhouse planet. Science. 2002;298(5595):981–7.
Taherzadeh MJ. Bioengineering to tackle environmental challenges, climate changes and resource recovery. Bioengineered. 2019;10(1):698–9.
Daniel-Gromke J, et al. Current developments in production and utilization of biogas and biomethane in Germany. Chem Ing Tech. 2017;90:17–35.
Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci. 2005;31(2):171–92.
McKendry P. Energy production from biomass II: conversion technologies. Biores Technol. 2002;83(1):47–54.
Abraham ER, Ramachandran S, Ramalingam V. Biogas: can it be an important source of energy? Environ Sci Pollut Res Int. 2007;14(1):67–71.
Wainaina S, Lukitawesa-Awasthi MK, Taherzadeh MJ. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered. 2019;10(1):437–58.
Abbassi-Guendouz A, et al. Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol. 2012;111:55–61.
Shinners KJ, et al. Comparison of wet and dry corn stover harvest and storage. Biomass Bioenergy. 2017;31(4):211–21.
Di MF, et al. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: comparison of system performances and identification of microbial guilds. Waste Manag. 2017;59:172–80.
Matheri AN, et al. Analysis of the biogas productivity from dry anaerobic digestion of organic fraction of municipal solid waste. Renew Sustain Energy Rev. 2018;81(P2):2328–34.
Fagbohungbe MO, et al. High solid anaerobic digestion: operational challenges and possibilities. Environ Technol Innov. 2015;4:268–84.
Kothari R, et al. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew Sustain Energy Rev. 2014;39:174–95.
Bolzonella D, et al. Dry anaerobic digestion of differently sorted organic municipal solid waste: a fullscale experience. Water Sci Technol. 2000;53(8):23–32.
Radwan AM, et al. Dry anaerobic fermentation of agricultural residues. Biomass Bioener. 1993;5(6):495–9.
Pavan P, et al. Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradability. Water Sci Technol. 2000;41(3):75–81.
Abbassi-Guendouz A, et al. Total solids content drives high solid anaerobic digestion via mass transfer limitation. Biores Technol. 2012;111:55–61.
Jha AK, et al. Research advances in dry anaerobic digestion process of solid organic wastes. Afr J Biotech. 2011;10(65):14242–53.
Liu G, Peng XY, Long TR. Advance in high-solid anaerobic digestion of organic fraction of municipal solid waste. J Central South Univ Technol. 2006;13:151–7.
Li D, Yuan Z. Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresour Technol. 2010;101:2722–8.
Schnürer A, Jarvis A. Microbiological handbook for biogas plants. Swedish Waste Manage. 2010;U2009(03):1–138.
Mata-Alvarez J, Macé S, Llabrés P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. BioresourTechnol. 2000;74:3–16.
Valdez-Vazquez I, Poggi-Varaldo HM. Alkalinity and high total solids affecting H2 production from organic solid waste by anaerobic consortia. Int J Hydrogen Energ. 2009;34:3639–46.
Metcalf & Eddy, et al. Wastewater engineering: treatment and reuse. 4th ed. Boston: McGraw-Hill; 2003.
Pavlostathis SG, Giraldogomez E. Kinetics of anaerobic treatment. Water Sci Technol. 1991;24(8):35–59.
Veeken A, et al. Effect of pH and VFA on hydrolysis of organic solid waste. J Environ Eng ASCE. 2000;126:1076–81.
Guendouz J, et al. Dry anaerobic digestion in batch mode: design and operation of a laboratory-scale, completely mixed reactor. Waste Manage. 2010;30:1768–71.
Yi J, et al. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PLoS ONE. 2014;9(7): e102548.
Li A, et al. A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels. 2013;6(1):3.
Di Maria F, et al. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds. Waste Manage. 2017;59:172–80.
Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol. 1999;28(3):193–202.
Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev. 1997;61(2):262–80.
Demirel B, Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol. 2008;7(2):173–90.
Rapport J, et al. Current anaerobic digestion technologies used for treatment of municipal organic solid waste. Sacramento: California Environmental Protection Agency; 2008.
Baroutian S, Eshtiaghi N, Grapes DJ. Rheology of a primary and secondary sludge mixture: dependency on temperature and solids concentration. Biores Technol. 2013;140:227–33.
Coussot P. Yield stress fluid flows: a review of experimental data. J Nonnewton Fluid Mech. 2014;211:31–49.
Lissens G, et al. Solid waste digestors: process performance and practice for municipal solid waste digestion. Water Sci Technol. 2001;44(8):91–102.
Lusk P. Latest progress in anaerobic digestion. Biocycle. 1999;40(7):52–4.
Rajeshwari KV, et al. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sust Energ Rev. 2000;4:135–56.
Halalsheh M, et al. Effect of SRT and temperature on biological conversions and the related scum-forming potential. Water Res. 2005;39(12):2475–82.
Liu Y, Tay J. State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv. 2004;22:533–63.
Bowen EJ, et al. Low-temperature limitation of bioreactor sludge in anaerobic treatment of domestic wastewater. Water Sci Technol. 2014;69(5):1004–13.
Wu M-C, Sun K-W, Zhang Y. Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste. J Zhejiang Univ Sci B. 2006;7(3):180–5.
Navickas K et al. Influence of temperature variation on biogas yield from industrial wastes and energy plants. Eng Rural Dev 2013;405–410.
Song Y-C, Kwon S-J, Woo J-H. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Res. 2004;38(7):1653–62.
Mao C, et al. Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev. 2015;45:540–55.
Barjenbruch M, et al. Minimizing of foaming in digesters by pre-treatment of the surplus-sludge. Wat Sci Tech. 2000. https://doi.org/10.2166/wst.2000.0215.
Lee CH, Liu JC. Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Res. 2000;34:4430–6.
Wang D, et al. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Res. 2018;30:281–90.
Ding Z, et al. Role of extracellular polymeric substances (EPS) production in bioaggregation: application towastewater treatment. Appl Microbiol Biotechnol. 2015;99:9883–905.
Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv. 2010;28:882–94.
Zhang J, et al. Evolution of rheological characteristics of high-solid municipal sludge during anaerobic digestion. Appl Rheol. 2016;26:1–10.
Lukitawesa, et al., Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered, 2020;11(1): 39–52.
Ward AJ, et al. Optimisation of the anaerobic digestion of agricultural resources. Biores Technol. 2008;99(17):7928–40.
Brown D, Shi J, Li Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosicfeedstocks for biogas production. BioresourTechnol. 2012;124:379–86.
Staley BF, DeLos-Reyes FL, Barlaz M. Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl Environ Microbiol. 2011;77:2381–91.
Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Biores Technol. 2008;99(10):4044–64.
Lay JJ, Li YY, Noike T. Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res. 1997;31:1518–24.
Angelidaki I, Ahring BK. Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol. 1993;38(4):560–4.
Gallert C, Winter J. Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production. Appl Microbiol Biotechnol. 1997;48:405–10.
Kayhanian M. Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol. 1999;20(4):355–65.
Astals S, et al. Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems. Water Res. 2018;143:127–35.
Riggio S, et al. Leachate flush strategies for managing volatile fatty acids accumulation in leach-bed reactors. Biores Technol. 2017;232:93–102.
De-Vrieze J, et al. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Biores Technol. 2012;11:1–9.
Jokela JP, Rintala J. Anaerobic solubilisation of nitrogen from municipal solid waste (MSW. Rev Environ Sci Bio/Technol. 2003;2:67–77.
Patinvoh RJ, Dry anaerobic digestion of wastes: processes and applications, in sustainable resource recovery and zero waste approaches. 2019, Elsevier. p. 175-182. https://doi.org/10.1016/B978-0-444-64200-4.00012-8
Rivard C, et al. Anaerobic digestion of processed municipal solid waste using a novel high solids reactor: Maximum solids levels and mixing requirements. Biotech Lett. 1990;12:235–40.
Nges IA, Liu J. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic condition. Ren Energ. 2010;35(19):2200–6.
Karim K, et al. Anaerobic digestion of animal waste: effect of mode of mixing. Water Res. 2005;39(15):3597–606.
Appels L, et al. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci. 2008;34(6):755–81.
Mohanty MK, Das D. Industrial applications of anaerobic digestion. 2019;227–248.
Cao X, et al. Effect of total suspended solids and various treatment on rheological characterization of municipal sludge. Res Chem Inteemed. 2018;44:5123–38.
Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improve dewaterability. J Hazard Mater. 2003;98:51–67.
Penaud V, Delgenès J-P, Moletta R. Characterization of soluble molecules from thermochemically pretreated sludge. J Environ Eng. 2000;16:397–402.
Fu Y, et al. Dry anaerobic digestion technologies for agricultural straw and acceptability in China. Sustainability. 2018;10(12):1–13.
Innovative Solutions for Cities and Agriculture. BEKON energy technologies GmbH & Co. KG., in bioenergy via dry fermentation.http://www.cityofpaloalto.org/civicax/filebank/documents/19875 Accessed 03 Mar 2014.
Tyrberg, L. VMAB Biogas at Mörrum waste treatment plant in Mörrum, Karlshamn municipality. 2013. http://www.res-chains.eu/wp-content/uploads/2014/09/M%C3%B6rrum-biogas-final.pdf. Accessed 24 Jul 2017.
Baere, L.D. The DRANCO technology: a unique digestion technology for solid organic wastes. 2012. http://www.ows.be/wp-content/uploads/2013/02/The-DRANCO-technology-2012.pdf. Accessed 16 Sep 2017.
BEKON GmbH, Innovative solutions for municipalities and waste management companies in energy for the future dry fermentation. 2016. https://www.bekon.eu/en/. Accessed 28 Nov 2021.
Vandevivere P, De Baere L, Verstraete W. Types of anaerobic digester for solid wastes, in Biomethanization of the organic fraction of municipal solid wastes. London: Iwa Publishing; 2003. p. 111–40.
Kompogas® dry anaerobic digestion Energy from organic waste. http://www.hz-inova.com/cms/wp-content/uploads/2015/06/HZI_Kompogas_10_engl_RZ_3_WEB.pdf. Accessed 16 Sep 2017.
STRABAG. Dry digestion. STRABAG Umweltanlagen GmbH; http://www.strabag-umwelttechnik.com/databases/internet/_public/files.nsf/SearchView/A9C0D56F88B4274EC125774600504FB5/File/3_4%20Trockenvergaerung_e%20d.pdf. Accessed 16 Sep 2017.
Cesaro A, Belgiomo V, Naddeo V. Comparative technology assessment of anaerobic digestion of organic fraction of MSW. WIT Trans Ecol Environ. 2010;142:355–66.
Beddoes JC, et al. An analysis of energy production costs from anaerobic digestion systems on US livestock production facilities. Tech Note. 2007;1:1.
Bolzonella D, et al. Dry anaerobic digestion of differently sorted organic municipal solid waste: a full scale experience. Water Sci Technol. 2006;53(8):23–32.
Qian M, et al. Industrial scale garage-type dry fermentation of municipal solid waste to biogas. Biores Technol. 2016;217:82–9.
Matheri AN, et al. Analysis of the biogas productivity from dry anaerobic digestion of organic fraction of municipal solid waste. Renew Sustain Energy Rev. 2018;81:2328–34.
Tian S-Q, Zhao R-Y, Chen Z-C. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sustain Energy Rev. 2018;91:483–9.
Shinners KJ, et al. Comparison of wet and dry corn stover harvest and storage. Biomass Bioenerg. 2007;31(4):211–21.
Barry M, Colleran E, Wilkie A. Two-stage digestion of organic residues and energy crops. Energy Conserv Use Renew Energ Bio Indust. 1982;2:75–87.
Yoshida H, Gable JJ, Park JK. Evaluation of organic waste diversion alternatives for greenhouse gas reduction. Resour Conserv Recycl. 2012;60:1–9.
Linville JL, et al. Current state of anaerobic digestion of organic wastes in North America. Curr Sustain/Renew Energy Rep. 2015;2(4):136–44.
Amnuaycheewa P, et al. Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids. Ind Crops Prod. 2016;87:247–54.
Zhou J, et al. Different organic loading rates on the biogas production during the anaerobic digestion of rice straw: a pilot study. Biores Technol. 2017;244:865–71.
Rahman MA, et al. Anaerobic co-digestion of poultry droppings and briquetted wheat straw at mesophilic and thermophilic conditions: Influence of alkali pretreatment. Renew Energy. 2018;128:241–9.
Han J, Xiang X, Li X. A new approach of agricultural residues utilization—biogas dry fermentation project by membrane covered trough. Agric. Eng. Technol. 2008;4:14–7.
Ghosh S, et al. Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD). Water Sci Technol. 2000;41(3):101–10.
Chynoweth D, Legrand R, Anaerobic digestion as an integral part of municipal waste management. In: Proceedings Landfill Gas and Anaerobic Digestion of Solid Waste, 1988: p. 467–480.
Lianhua L, et al. Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. Int J Hydrogen Energy. 2010;35(13):7261–6.
André L, Pauss A, Ribeiro T. Solid anaerobic digestion: State-of-art, scientific and technological hurdles. Biores Technol. 2018;247:1027–37.