Current and upcoming mitochondrial targets for cancer therapy

Seminars in Cancer Biology - Tập 47 - Trang 154-167 - 2017
Hyoung Kyu Kim1,2, Yeon Hee Noh1, Bernd Nilius3, Kyung Soo Ko1, Byoung Doo Rhee1, Nari Kim1, Jin Han1
1National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
2Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
3KU Leuven, Department Cell Mol Medicine, Leuven, 3000, Belgium

Tài liệu tham khảo

Warburg, 1956, On respiratory impairment in cancer cells, Science, 124, 269, 10.1126/science.124.3215.269 Hanahan, 2000, The hallmarks of cancer, Cell, 100, 57, 10.1016/S0092-8674(00)81683-9 Hanahan, 2011, Hallmarks of cancer: the next generation, Cell, 144, 646, 10.1016/j.cell.2011.02.013 Vyas, 2016, Mitochondria and cancer, Cell, 166, 555, 10.1016/j.cell.2016.07.002 Acuna-Castroviejo, 2001, mitochondria, and cellular bioenergetics, J. Pineal Res., 30, 65, 10.1034/j.1600-079X.2001.300201.x Kim, 2016, Cardiac response to oxidative stress induced by mitochondrial dysfunction, Rev. Physiol. Biochem. Pharmacol., 170, 101, 10.1007/112_2015_5004 O'Rourke, 2007, Mitochondrial ion channels, Annu. Rev. Physiol., 69, 19, 10.1146/annurev.physiol.69.031905.163804 Peixoto, 2012, The therapeutic potential of mitochondrial channels in cancer, ischemia-reperfusion injury, and neurodegeneration, Mitochondrion, 12, 14, 10.1016/j.mito.2011.03.003 Capt, 2016, The human mitochondrial genome may code for more than 13 proteins, Mitochondrial DNA A DNA Mapp. Seq. Anal., 27, 3098 Kim, 2007, Mitochondrial alterations in human gastric carcinoma cell line, Am. J. Physiol. Cell Physiol., 293, C761, 10.1152/ajpcell.00043.2007 Zong, 2016, Mitochondria and cancer, Mol. Cell, 61, 667, 10.1016/j.molcel.2016.02.011 Giampazolias, 2016, Mitochondria and the hallmarks of cancer, FEBS J., 283, 803, 10.1111/febs.13603 Cadenas, 2000, Mitochondrial free radical generation, oxidative stress, and aging, Free Radic. Biol. Med., 29, 222, 10.1016/S0891-5849(00)00317-8 Ames, 1995, Mitochondrial decay in aging, Biochim. Biophys. Acta, 1271, 165, 10.1016/0925-4439(95)00024-X Berneburg, 2006, ‘To repair or not to repair − no longer a question': repair of mitochondrial DNA shielding against age and cancer, Exp. Dermatol., 15, 1005, 10.1111/j.1600-0625.2006.00508.x Alexeyev, 2013, The maintenance of mitochondrial DNA integrity–critical analysis and update, Cold Spring Harb. Perspect. Biol., 5, a012641, 10.1101/cshperspect.a012641 Shokolenko, 2009, Oxidative stress induces degradation of mitochondrial DNA, Nucleic Acids Res., 37, 2539, 10.1093/nar/gkp100 Wallace, 1997, Mitochondrial DNA in aging and disease, Sci. Am., 277, 40, 10.1038/scientificamerican0897-40 Wallace, 2001, A mitochondrial paradigm for degenerative diseases and ageing, Novartis Found. Symp., 235, 247, 10.1002/0470868694.ch20 Lu, 2009, Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis, Cell Res., 19, 802, 10.1038/cr.2009.69 Chatterjee, 2006, Mitochondrial DNA mutations in human cancer, Oncogene, 25, 4663, 10.1038/sj.onc.1209604 Modica-Napolitano, 2007, Mitochondria and human cancer, Curr. Mol. Med., 7, 121, 10.2174/156652407779940495 Park, 2009, A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis, Hum. Mol. Genet., 18, 1578, 10.1093/hmg/ddp069 Sharma, 2011, Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation, Hum. Mol. Genet., 20, 4605, 10.1093/hmg/ddr395 Ferreira, 2015, Role of mtDNA-related mitoepigenetic phenomena in cancer, Eur. J. Clin. Invest., 45, 44, 10.1111/eci.12359 Shock, 2011, DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria, Proc. Natl. Acad. Sci. U. S. A., 108, 3630, 10.1073/pnas.1012311108 Iacobazzi, 2013, Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool, Mol. Genet. Metab., 110, 25, 10.1016/j.ymgme.2013.07.012 Feng, 2012, Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer, Mol. Med. Rep., 6, 125 Wen, 2013, Decreased copy number of mitochondrial DNA: A potential diagnostic criterion for gastric cancer, Oncol. Lett., 6, 1098, 10.3892/ol.2013.1492 Reznik, 2016, Mitochondrial DNA copy number variation across human cancers, Elife, 5, 10.7554/eLife.10769 Baysal, 2000, Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma, Science, 287, 848, 10.1126/science.287.5454.848 Tomlinson, 2002, Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer, Nat. Genet., 30, 406, 10.1038/ng849 Yan, 2009, IDH1 and IDH2 mutations in gliomas, N. Engl. J. Med., 360, 765, 10.1056/NEJMoa0808710 Chen, 2012, Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells, Biochim. Biophys. Acta, 1826, 370 Cardaci, 2012, TCA cycle defects and cancer: when metabolism tunes redox state, Int. J. Cell Biol., 2012, 9, 10.1155/2012/161837 Dang, 2009, Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, 462, 739, 10.1038/nature08617 Gimenez-Roqueplo, 2001, The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway, Am. J. Hum. Genet., 69, 1186, 10.1086/324413 Selak, 2005, Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase, Cancer Cell, 7, 77, 10.1016/j.ccr.2004.11.022 Sullivan, 2013, The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling, Mol. Cell, 51, 236, 10.1016/j.molcel.2013.05.003 Adam, 2011, Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling, Cancer Cell, 0, 524, 10.1016/j.ccr.2011.09.006 Altman, 2016, From Krebs to clinic: glutamine metabolism to cancer therapy, Nat. Rev. Cancer, 16, 619, 10.1038/nrc.2016.71 Weinberg, 2015, Targeting mitochondria metabolism for cancer therapy, Nat. Chem. Biol., 11, 9, 10.1038/nchembio.1712 Saunier, 2016, The pyruvate dehydrogenase complex in cancer: an old metabolic gatekeeper regulated by new pathways and pharmacological agents, Int. J. Cancer, 138, 809, 10.1002/ijc.29564 Grassian, 2011, Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation, Genes Dev., 25, 1716, 10.1101/gad.16771811 Shan, 2014, Tyr-94 phosphorylation inhibits pyruvate dehydrogenase phosphatase 1 and promotes tumor growth, J. Biol. Chem., 289, 21413, 10.1074/jbc.M114.581124 Pavlova, 2016, The emerging hallmarks of cancer metabolism, Cell Metab., 23, 27, 10.1016/j.cmet.2015.12.006 Alavian, 2014, An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore, Proc. Natl. Acad. Sci. U. S. A., 111, 10580, 10.1073/pnas.1401591111 Martinez-Caballero, 2009, Assembly of the mitochondrial apoptosis-induced channel, MAC J. Biol. Chem., 284, 12235, 10.1074/jbc.M806610200 Trudel, 2007, The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan, Clin. Cancer Res., 13, 621, 10.1158/1078-0432.CCR-06-1526 Vogler, 2009, Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia, Blood, 113, 4403, 10.1182/blood-2008-08-173310 Han, 2006, Regulation of Nur77 nuclear export by c-Jun N-terminal kinase and Akt, Oncogene, 25, 2974, 10.1038/sj.onc.1209358 Bahamonde, 2003, Plasma membrane voltage-dependent anion channel mediates antiestrogen-activated maxi Cl- currents in C1300 neuroblastoma cells, J. Biol. Chem., 278, 33284, 10.1074/jbc.M302814200 Szabo, 2014, Mitochondrial channels: ion fluxes and more, Physiol. Rev., 94, 519, 10.1152/physrev.00021.2013 Priault, 1999, Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of mitochondrial membranes, role of VDAC and ATP requirement, Eur. J. Biochem., 260, 684, 10.1046/j.1432-1327.1999.00198.x Madesh, 2001, VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release, J. Cell Biol., 155, 1003, 10.1083/jcb.200105057 Rostovtseva, 1996, ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane, J. Biol. Chem., 271, 28006, 10.1074/jbc.271.45.28006 Baines, 2007, Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death, Nat. Cell Biol., 9, 550, 10.1038/ncb1575 Simamura, 2008, Mitochondrial voltage-dependent anion channels (VDACs) as novel pharmacological targets for anti-cancer agents, J. Bioenergy Biomembr., 40, 213, 10.1007/s10863-008-9158-6 Cheng, 2003, VDAC2 inhibits BAK activation and mitochondrial apoptosis, Science, 301, 513, 10.1126/science.1083995 Shoshan-Barmatz, 2010, a multi-functional mitochondrial protein regulating cell life and death, Mol. Aspects Med., 31, 227, 10.1016/j.mam.2010.03.002 Galluzzi, 2008, Disruption of the hexokinase-VDAC complex for tumor therapy, Oncogene, 27, 4633, 10.1038/onc.2008.114 Leanza, 2014, Mitochondrial ion channels as oncological targets, Oncogene, 33, 5569, 10.1038/onc.2013.578 Szabo, 2010, Contribution of voltage-gated potassium channels to the regulation of apoptosis, FEBS Lett., 584, 2049, 10.1016/j.febslet.2010.01.038 Szabo, 2008, Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes, Proc. Natl. Acad. Sci. U. S. A., 105, 14861, 10.1073/pnas.0804236105 Szabo, 2011, Single-point mutations of a lysine residue change function of Bax and Bcl-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts: novel insights into the molecular mechanisms of Bax-induced apoptosis, Cell Death Differ., 18, 427, 10.1038/cdd.2010.112 Felipe, 2012, Targeting the voltage-dependent K(+) channels Kv1.3 and Kv1.5 as tumor biomarkers for cancer detection and prevention, Curr. Med. Chem., 19, 661, 10.2174/092986712798992048 Leanza, 2013, Psora-4 and PAP-1, inhibitors of the potassium channel Kv1.3, as a new and selective therapeutic strategy in chronic lymphocytic leukemia, Leukemia, 27, 1782, 10.1038/leu.2013.56 Quast, 2012, General Sensitization of melanoma cells for TRAIL-induced apoptosis by the potassium channel inhibitor TRAM-34 depends on release of SMAC, PLoS One, 7, e39290, 10.1371/journal.pone.0039290 Clark, 2010, ATP-sensitive potassium channels in health and disease, Adv. Exp. Med. Biol., 654, 165, 10.1007/978-90-481-3271-3_8 Nichols, 2013, KATP channels and cardiovascular disease: suddenly a syndrome, Circ. Res., 112, 1059, 10.1161/CIRCRESAHA.112.300514 Inoue, 1991, ATP-sensitive K+ channel in the mitochondrial inner membrane, Nature, 352, 244, 10.1038/352244a0 Quindry, 2010, Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts, Am. J. Physiol. Heart Circ. Physiol., 10.1152/ajpheart.01211.2009 Liu, 2010, Opening of the mitoKATP channel and decoupling of mitochondrial complex II and III contribute to the suppression of myocardial reperfusion hyperoxygenation, Mol. Cell. Biochem., 337, 25, 10.1007/s11010-009-0283-2 Yang, 2009, KR-31761, a novel K+(ATP)-channel opener, exerts cardioprotective effects by opening both mitochondrial K+(ATP) and Sarcolemmal K+(ATP) channels in rat models of ischemia/reperfusion-induced heart injury, J. Pharmacol. Sci., 109, 222, 10.1254/jphs.08132FP Suzuki-Karasaki, 2014, Crosstalk between mitochondrial ROS and depolarization in the potentiation of TRAIL-induced apoptosis in human tumor cells, Int. J. Oncol., 44, 616, 10.3892/ijo.2013.2215 Huang, 2015, Mitochondrial KATP channels control glioma radioresistance by regulating ROS-Induced ERK activation, Mol. Neurobiol., 52, 626, 10.1007/s12035-014-8888-1 Patel, 2004, The 2P-domain K+ channels: role in apoptosis and tumorigenesis, Pflugers Arch., 448, 261, 10.1007/s00424-004-1255-8 Pei, 2003, Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function, Proc. Natl. Acad. Sci. U. S. A., 100, 7803, 10.1073/pnas.1232448100 Rusznak, 2008, Mitochondrial expression of the two-pore domain TASK-3 channels in malignantly transformed and non-malignant human cells, Virchows Arch., 452, 415, 10.1007/s00428-007-0545-x Toczylowska-Maminska, 2014, Potassium channel in the mitochondria of human keratinocytes, J. Invest. Dermatol., 134, 764, 10.1038/jid.2013.422 Kosztka, 2011, Inhibition of TASK-3 (KCNK9) channel biosynthesis changes cell morphology and decreases both DNA content and mitochondrial function of melanoma cells maintained in cell culture, Melanoma Res., 21, 308, 10.1097/CMR.0b013e3283462713 Kajma, 2012, A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus, Biochim. Biophys. Acta, 1817, 1867, 10.1016/j.bbabio.2012.02.029 Kamer, 2015, The molecular era of the mitochondrial calcium uniporter, Nat. Rev. Mol. Cell Biol., 16, 545, 10.1038/nrm4039 Thu, 2012, NecroX-5 prevents hypoxia/reoxygenation injury by inhibiting the mitochondrial calcium uniporter, Cardiovasc. Res., 94, 342, 10.1093/cvr/cvs122 Cuong, 2016, Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan, Korean J. Physiol. Pharmacol., 20, 213, 10.4196/kjpp.2016.20.2.213 Herzig, 2013, Life without the mitochondrial calcium uniporter, Nat. Cell Biol., 15, 1398, 10.1038/ncb2891 Tosatto, 2016, The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1alpha, EMBO Mol. Med., 8, 569, 10.15252/emmm.201606255 Marchi, 2013, Mitochondrial calcium uniporter, MiRNA and cancer: live and let die, Commun. Integr. Biol., 6, e23818, 10.4161/cib.23818 Curry, 2013, Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells, Biochem. Biophys. Res. Commun., 434, 695, 10.1016/j.bbrc.2013.04.015 Marchi, 2013, Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25, Curr. Biol., 23, 58, 10.1016/j.cub.2012.11.026 Song, 2013, Mitochondrial modulation decreases the bortezomib-resistance in multiple myeloma cells, Int. J. Cancer, 10.1002/ijc.28149 Hall, 2014, Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival, PLoS One, 9, e96866, 10.1371/journal.pone.0096866 Venkatachalam, 2007, TRP channels, Annu. Rev. Biochem., 76, 387, 10.1146/annurev.biochem.75.103004.142819 Prevarskaya, 2007, TRP channels in cancer, Biochim. Biophys. Acta, 1772, 937, 10.1016/j.bbadis.2007.05.006 Zhao, 2017, Versatile roles of intracellularly located TRPV1 channel, J. Cell. Physiol., 232, 1957, 10.1002/jcp.25704 Hurt, 2016, Transient receptor potential vanilloid 1 regulates mitochondrial membrane potential and myocardial reperfusion injury, J. Am. Heart Assoc., 5, 10.1161/JAHA.116.003774 Miyake, 2015, Activation of mitochondrial transient receptor potential vanilloid 1 channel contributes to microglial migration, Glia, 10.1002/glia.22854 Nita, 2016, Privileged crosstalk between TRPV1 channels and mitochondrial calcium shuttling machinery controls nociception, Biochim. Biophys. Acta, 10.1016/j.bbamcr.2016.09.009 Feng, 2013, Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake, Proc. Natl. Acad. Sci. U. S. A., 110, 11011, 10.1073/pnas.1309531110 Bao, 2016, Depletion of the human ion channel TRPM2 in neuroblastoma demonstrates its key role in cell survival through modulation of mitochondrial ROS and bioenergetics, J. Biol. Chem., 10.1074/jbc.M116.747147 Amantini, 2007, Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation, J. Neurochem., 102, 977, 10.1111/j.1471-4159.2007.04582.x Amantini, 2009, Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner, Carcinogenesis, 30, 1320, 10.1093/carcin/bgp138 Yang, 2009, Transient receptor potential channel C3 contributes to the progression of human ovarian cancer, Oncogene, 28, 1320, 10.1038/onc.2008.475 Wolf, 2009, Multidrug resistance phenotypes and MRS2 mitochondrial magnesium channel: two players from one stemness?, Cancer Biol. Ther., 8, 615, 10.4161/cbt.8.7.8152 Kolisek, 2003, Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria, EMBO J., 22, 1235, 10.1093/emboj/cdg122 Suh, 2007, CLIC4, skin homeostasis and cutaneous cancer: surprising connections, Mol. Carcinog., 46, 599, 10.1002/mc.20324 Fernandez-Salas, 2002, mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53, Mol. Cell. Biol., 22, 3610, 10.1128/MCB.22.11.3610-3620.2002 Peruzzo, 2016, Impact of intracellular ion channels on cancer development and progression, Eur. Biophys. J., 45, 685, 10.1007/s00249-016-1143-0 Chen, 2012, Mitochondrial dysfunction and cancer metastasis, J. Bioenergy Biomembr., 44, 619, 10.1007/s10863-012-9465-9 Gupta, 2006, Cancer metastasis: building a framework, Cell, 127, 679, 10.1016/j.cell.2006.11.001 Ishikawa, 2008, ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis, Science, 320, 661, 10.1126/science.1156906 Kulawiec, 2009, Cancer cell mitochondria confer apoptosis resistance and promote metastasis, Cancer Biol. Ther., 8, 1378, 10.4161/cbt.8.14.8751 Li, 2015, Down-regulation of NDUFB9 promotes Breast cancer cell proliferation, metastasis by mediating mitochondrial metabolism, PLoS One, 10, e0144441, 10.1371/journal.pone.0144441 Caino, 2015, PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion, Proc. Natl. Acad. Sci. U. S. A., 112, 8638, 10.1073/pnas.1500722112 Porporato, 2014, A mitochondrial switch promotes tumor metastasis, Cell Rep., 8, 754, 10.1016/j.celrep.2014.06.043 Goh, 2011, Mitochondrial targeted catalase suppresses invasive breast cancer in mice, BMC Cancer, 11, 191, 10.1186/1471-2407-11-191 Bonuccelli, 2010, Ketones and lactate fuel tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism, ABBV Cell Cycle, 9, 3506, 10.4161/cc.9.17.12731 Sotgia, 2012, Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the reverse Warburg effect in positive lymph node tissue, ABBV Cell Cycle, 11, 1445, 10.4161/cc.19841 LeBleu, 2014, PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis, Nat. Cell Biol., 16, 992, 10.1038/ncb3039 Luo, 2016, A PGC1alpha-mediated transcriptional axis suppresses melanoma metastasis, Nature, 537, 422, 10.1038/nature19347 Seo, 2016, The mitochondrial unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis, PLoS Biol., 14, e1002507, 10.1371/journal.pbio.1002507 Okon, 2015, Mitochondrial ROS and cancer drug resistance: implications for therapy, Pharmacol. Res., 100, 170, 10.1016/j.phrs.2015.06.013 Zhang, 2016, Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors, J. Clin. Invest., 126, 1834, 10.1172/JCI82661 Maiti, 2012, Reactive oxygen species reduction is a key underlying mechanism of drug resistance in cancer chemotherapy, Chemothe.: Open Access, 2012 Maiti, 2010, Gene network analysis of oxidative stress-mediated drug sensitivity in resistant ovarian carcinoma cells, Pharmacogenomics J., 10, 94, 10.1038/tpj.2009.49 Roesch, 2013, Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells, Cancer Cell, 23, 811, 10.1016/j.ccr.2013.05.003 Uddin, 2014, Anticancer strategy targeting mitochondrial biogenesis in ovarian cancer, J. Cancer Sci. Ther., 2014 Farnie, 2015, High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant, Oncotarget, 6, 30472, 10.18632/oncotarget.5401 Vazquez, 2013, PGC1-alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress, Cancer Cell, 23, 287, 10.1016/j.ccr.2012.11.020 Zhou, 2012, Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells, Cancer Res., 72, 304, 10.1158/0008-5472.CAN-11-1674 Clarke, 2006, Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells, Cancer Res., 66, 9339, 10.1158/0008-5472.CAN-06-3126 Reya, 2001, Stem cells, cancer, and cancer stem cells, Nature, 414, 105, 10.1038/35102167 Ye, 2011, Heterogeneity of mitochondrial membrane potential: a novel tool to isolate and identify cancer stem cells from a tumor mass?, Stem Cell Rev., 7, 153, 10.1007/s12015-010-9122-9 Loureiro, 2013, Mitochondria in cancer stem cells: a target for therapy, Recent Pat. Endocr. Metab. Immune Drug Discov., 7, 102, 10.2174/18722148113079990006 Song, 2015, Mitochondria as therapeutic targets for cancer stem cells, World J. Stem Cells, 7, 418, 10.4252/wjsc.v7.i2.418 Margineantu, 2016, Mitochondrial functions in stem cells, Curr. Opin. Genet. Dev., 38, 110, 10.1016/j.gde.2016.05.004 Song, 2015, FOXM1-Induced PRX3 regulates stemness and survival of colon cancer cells via maintenance of mitochondrial function, Gastroenterology, 149, 1006, 10.1053/j.gastro.2015.06.007 Sukumar, 2016, Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy, Cell Metab., 23, 63, 10.1016/j.cmet.2015.11.002 Chen, 2016, NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism, Cell Metab., 23, 206, 10.1016/j.cmet.2015.12.004 Dong, 2013, Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer, Cancer Cell, 23, 316, 10.1016/j.ccr.2013.01.022 Alvero, 2011, Targeting the mitochondria activates two independent cell death pathways in ovarian cancer stem cells, Mol. Cancer Ther., 10, 1385, 10.1158/1535-7163.MCT-11-0023 Hirsch, 2013, Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth, Proc. Natl. Acad. Sci., 110, 972, 10.1073/pnas.1221055110 Mayer, 2015, Metformin and prostate cancer stem cells: a novel therapeutic target, Prostate Cancer Prostatic Dis., 18, 303, 10.1038/pcan.2015.35 Sancho, 2015, MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells, Cell Metab., 22, 590, 10.1016/j.cmet.2015.08.015 Mantel, 2012, Mouse hematopoietic cell-targeted STAT3 deletion: stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging-like phenotype, Blood, 120, 2589, 10.1182/blood-2012-01-404004 Mellman, 2011, Cancer immunotherapy comes of age, Nature, 480, 480, 10.1038/nature10673 Scharping, 2016, The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral t cell metabolic insufficiency and dysfunction, Immunity, 45, 701, 10.1016/j.immuni.2016.08.009 Schietinger, 2016, Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis, Immunity, 45, 389, 10.1016/j.immuni.2016.07.011 La-Beck, 2015, Immune checkpoint inhibitors: new insights and current place in cancer therapy, Pharmacotherapy, 35, 963, 10.1002/phar.1643 Couzin-Frankel, 2013, Breakthrough of the year 2013. Cancer immunotherapy, Science, 342, 1432, 10.1126/science.342.6165.1432 Zhang, 2016, Aging: T cell metabolism within tumors, Aging (Albany NY), 8, 1163, 10.18632/aging.100979 Bengsch, 2016, Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion, Immunity, 45, 358, 10.1016/j.immuni.2016.07.008 Marrache, 2013, Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy, ACS Nano, 7, 7392, 10.1021/nn403158n Balmer, 2016, Feeling worn out? PGC1alpha to the rescue for dysfunctional mitochondria in T cell exhaustion, Immunity, 45, 233, 10.1016/j.immuni.2016.07.024 Sanchez-Rivera, 2015, Applications of the CRISPR-Cas9 system in cancer biology, Nat. Rev. Cancer, 15, 387, 10.1038/nrc3950 Luo, 2016, CRISPR/Cas9: from genome engineering to cancer drug discovery, Trends Cancer, 2, 313, 10.1016/j.trecan.2016.05.001 Burr, 2016, Mitochondrial protein lipoylation and the 2-oxoglutarate dehydrogenase complex controls HIF1a stability in aerobic conditions, Cell Metab., 24, 740, 10.1016/j.cmet.2016.09.015 Brand, 2016, LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells, Cell Metab., 10.1016/j.cmet.2016.08.011 Birsoy, 2015, An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis, Cell, 162, 540, 10.1016/j.cell.2015.07.016 Arroyo, 2016, A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation, Cell Metab., 10.1016/j.cmet.2016.08.017 Dong, 2016, Focused screening of mitochondrial metabolism reveals a crucial role for a tumor suppressor Hbp1 in ovarian reserve, Cell Death Differ., 23, 1602, 10.1038/cdd.2016.47 Bao, 2016, Mitochondrial dysfunction remodels one-carbon metabolism in human cells, Elife, 5, 10.7554/eLife.10575 Wang, 2015, Eliminate mitochondrial diseases by gene editing in germ-line cells and embryos, Protein Cell, 6, 472, 10.1007/s13238-015-0177-x Murphy, 2016, Mitochondrial diseases: shortcuts to therapies and therapeutic shortcuts, Mol. Cell, 64, 5, 10.1016/j.molcel.2016.09.022 Fogleman, 2016, CRISPR/Cas9 and mitochondrial gene replacement therapy: promising techniques and ethical considerations, Am. J. Stem Cells, 5, 39 Jo, 2015, Efficient mitochondrial genome editing by CRISPR/Cas9, BioMed Res. Int., 2015, 305716, 10.1155/2015/305716 Smith, 2012, Mitochondrial pharmacology, Trends Pharmacol. Sci., 33, 341, 10.1016/j.tips.2012.03.010 Vlashi, 2014, Metabolic differences in breast cancer stem cells and differentiated progeny, Breast Cancer Res. Treat., 146, 525, 10.1007/s10549-014-3051-2 Vlashi, 2011, Metabolic state of glioma stem cells and nontumorigenic cells, Proc. Natl. Acad. Sci. U. S. A., 108, 16062, 10.1073/pnas.1106704108 Janiszewska, 2012, Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells, Genes Dev., 26, 1926, 10.1101/gad.188292.112 Lagadinou, 2013, BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells, Cell Stem Cell, 12, 329, 10.1016/j.stem.2012.12.013 Ye, 2011, Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells, Int. J. Cancer, 129, 820, 10.1002/ijc.25944 Pasto, 2014, Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation, Oncotarget, 5, 4305, 10.18632/oncotarget.2010