Current and upcoming mitochondrial targets for cancer therapy
Tài liệu tham khảo
Warburg, 1956, On respiratory impairment in cancer cells, Science, 124, 269, 10.1126/science.124.3215.269
Hanahan, 2000, The hallmarks of cancer, Cell, 100, 57, 10.1016/S0092-8674(00)81683-9
Hanahan, 2011, Hallmarks of cancer: the next generation, Cell, 144, 646, 10.1016/j.cell.2011.02.013
Vyas, 2016, Mitochondria and cancer, Cell, 166, 555, 10.1016/j.cell.2016.07.002
Acuna-Castroviejo, 2001, mitochondria, and cellular bioenergetics, J. Pineal Res., 30, 65, 10.1034/j.1600-079X.2001.300201.x
Kim, 2016, Cardiac response to oxidative stress induced by mitochondrial dysfunction, Rev. Physiol. Biochem. Pharmacol., 170, 101, 10.1007/112_2015_5004
O'Rourke, 2007, Mitochondrial ion channels, Annu. Rev. Physiol., 69, 19, 10.1146/annurev.physiol.69.031905.163804
Peixoto, 2012, The therapeutic potential of mitochondrial channels in cancer, ischemia-reperfusion injury, and neurodegeneration, Mitochondrion, 12, 14, 10.1016/j.mito.2011.03.003
Capt, 2016, The human mitochondrial genome may code for more than 13 proteins, Mitochondrial DNA A DNA Mapp. Seq. Anal., 27, 3098
Kim, 2007, Mitochondrial alterations in human gastric carcinoma cell line, Am. J. Physiol. Cell Physiol., 293, C761, 10.1152/ajpcell.00043.2007
Zong, 2016, Mitochondria and cancer, Mol. Cell, 61, 667, 10.1016/j.molcel.2016.02.011
Giampazolias, 2016, Mitochondria and the hallmarks of cancer, FEBS J., 283, 803, 10.1111/febs.13603
Cadenas, 2000, Mitochondrial free radical generation, oxidative stress, and aging, Free Radic. Biol. Med., 29, 222, 10.1016/S0891-5849(00)00317-8
Ames, 1995, Mitochondrial decay in aging, Biochim. Biophys. Acta, 1271, 165, 10.1016/0925-4439(95)00024-X
Berneburg, 2006, ‘To repair or not to repair − no longer a question': repair of mitochondrial DNA shielding against age and cancer, Exp. Dermatol., 15, 1005, 10.1111/j.1600-0625.2006.00508.x
Alexeyev, 2013, The maintenance of mitochondrial DNA integrity–critical analysis and update, Cold Spring Harb. Perspect. Biol., 5, a012641, 10.1101/cshperspect.a012641
Shokolenko, 2009, Oxidative stress induces degradation of mitochondrial DNA, Nucleic Acids Res., 37, 2539, 10.1093/nar/gkp100
Wallace, 1997, Mitochondrial DNA in aging and disease, Sci. Am., 277, 40, 10.1038/scientificamerican0897-40
Wallace, 2001, A mitochondrial paradigm for degenerative diseases and ageing, Novartis Found. Symp., 235, 247, 10.1002/0470868694.ch20
Lu, 2009, Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis, Cell Res., 19, 802, 10.1038/cr.2009.69
Chatterjee, 2006, Mitochondrial DNA mutations in human cancer, Oncogene, 25, 4663, 10.1038/sj.onc.1209604
Modica-Napolitano, 2007, Mitochondria and human cancer, Curr. Mol. Med., 7, 121, 10.2174/156652407779940495
Park, 2009, A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis, Hum. Mol. Genet., 18, 1578, 10.1093/hmg/ddp069
Sharma, 2011, Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation, Hum. Mol. Genet., 20, 4605, 10.1093/hmg/ddr395
Ferreira, 2015, Role of mtDNA-related mitoepigenetic phenomena in cancer, Eur. J. Clin. Invest., 45, 44, 10.1111/eci.12359
Shock, 2011, DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria, Proc. Natl. Acad. Sci. U. S. A., 108, 3630, 10.1073/pnas.1012311108
Iacobazzi, 2013, Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool, Mol. Genet. Metab., 110, 25, 10.1016/j.ymgme.2013.07.012
Feng, 2012, Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer, Mol. Med. Rep., 6, 125
Wen, 2013, Decreased copy number of mitochondrial DNA: A potential diagnostic criterion for gastric cancer, Oncol. Lett., 6, 1098, 10.3892/ol.2013.1492
Reznik, 2016, Mitochondrial DNA copy number variation across human cancers, Elife, 5, 10.7554/eLife.10769
Baysal, 2000, Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma, Science, 287, 848, 10.1126/science.287.5454.848
Tomlinson, 2002, Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer, Nat. Genet., 30, 406, 10.1038/ng849
Yan, 2009, IDH1 and IDH2 mutations in gliomas, N. Engl. J. Med., 360, 765, 10.1056/NEJMoa0808710
Chen, 2012, Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells, Biochim. Biophys. Acta, 1826, 370
Cardaci, 2012, TCA cycle defects and cancer: when metabolism tunes redox state, Int. J. Cell Biol., 2012, 9, 10.1155/2012/161837
Dang, 2009, Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, 462, 739, 10.1038/nature08617
Gimenez-Roqueplo, 2001, The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway, Am. J. Hum. Genet., 69, 1186, 10.1086/324413
Selak, 2005, Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase, Cancer Cell, 7, 77, 10.1016/j.ccr.2004.11.022
Sullivan, 2013, The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling, Mol. Cell, 51, 236, 10.1016/j.molcel.2013.05.003
Adam, 2011, Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling, Cancer Cell, 0, 524, 10.1016/j.ccr.2011.09.006
Altman, 2016, From Krebs to clinic: glutamine metabolism to cancer therapy, Nat. Rev. Cancer, 16, 619, 10.1038/nrc.2016.71
Weinberg, 2015, Targeting mitochondria metabolism for cancer therapy, Nat. Chem. Biol., 11, 9, 10.1038/nchembio.1712
Saunier, 2016, The pyruvate dehydrogenase complex in cancer: an old metabolic gatekeeper regulated by new pathways and pharmacological agents, Int. J. Cancer, 138, 809, 10.1002/ijc.29564
Grassian, 2011, Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation, Genes Dev., 25, 1716, 10.1101/gad.16771811
Shan, 2014, Tyr-94 phosphorylation inhibits pyruvate dehydrogenase phosphatase 1 and promotes tumor growth, J. Biol. Chem., 289, 21413, 10.1074/jbc.M114.581124
Pavlova, 2016, The emerging hallmarks of cancer metabolism, Cell Metab., 23, 27, 10.1016/j.cmet.2015.12.006
Alavian, 2014, An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore, Proc. Natl. Acad. Sci. U. S. A., 111, 10580, 10.1073/pnas.1401591111
Martinez-Caballero, 2009, Assembly of the mitochondrial apoptosis-induced channel, MAC J. Biol. Chem., 284, 12235, 10.1074/jbc.M806610200
Trudel, 2007, The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan, Clin. Cancer Res., 13, 621, 10.1158/1078-0432.CCR-06-1526
Vogler, 2009, Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia, Blood, 113, 4403, 10.1182/blood-2008-08-173310
Han, 2006, Regulation of Nur77 nuclear export by c-Jun N-terminal kinase and Akt, Oncogene, 25, 2974, 10.1038/sj.onc.1209358
Bahamonde, 2003, Plasma membrane voltage-dependent anion channel mediates antiestrogen-activated maxi Cl- currents in C1300 neuroblastoma cells, J. Biol. Chem., 278, 33284, 10.1074/jbc.M302814200
Szabo, 2014, Mitochondrial channels: ion fluxes and more, Physiol. Rev., 94, 519, 10.1152/physrev.00021.2013
Priault, 1999, Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of mitochondrial membranes, role of VDAC and ATP requirement, Eur. J. Biochem., 260, 684, 10.1046/j.1432-1327.1999.00198.x
Madesh, 2001, VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release, J. Cell Biol., 155, 1003, 10.1083/jcb.200105057
Rostovtseva, 1996, ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane, J. Biol. Chem., 271, 28006, 10.1074/jbc.271.45.28006
Baines, 2007, Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death, Nat. Cell Biol., 9, 550, 10.1038/ncb1575
Simamura, 2008, Mitochondrial voltage-dependent anion channels (VDACs) as novel pharmacological targets for anti-cancer agents, J. Bioenergy Biomembr., 40, 213, 10.1007/s10863-008-9158-6
Cheng, 2003, VDAC2 inhibits BAK activation and mitochondrial apoptosis, Science, 301, 513, 10.1126/science.1083995
Shoshan-Barmatz, 2010, a multi-functional mitochondrial protein regulating cell life and death, Mol. Aspects Med., 31, 227, 10.1016/j.mam.2010.03.002
Galluzzi, 2008, Disruption of the hexokinase-VDAC complex for tumor therapy, Oncogene, 27, 4633, 10.1038/onc.2008.114
Leanza, 2014, Mitochondrial ion channels as oncological targets, Oncogene, 33, 5569, 10.1038/onc.2013.578
Szabo, 2010, Contribution of voltage-gated potassium channels to the regulation of apoptosis, FEBS Lett., 584, 2049, 10.1016/j.febslet.2010.01.038
Szabo, 2008, Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes, Proc. Natl. Acad. Sci. U. S. A., 105, 14861, 10.1073/pnas.0804236105
Szabo, 2011, Single-point mutations of a lysine residue change function of Bax and Bcl-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts: novel insights into the molecular mechanisms of Bax-induced apoptosis, Cell Death Differ., 18, 427, 10.1038/cdd.2010.112
Felipe, 2012, Targeting the voltage-dependent K(+) channels Kv1.3 and Kv1.5 as tumor biomarkers for cancer detection and prevention, Curr. Med. Chem., 19, 661, 10.2174/092986712798992048
Leanza, 2013, Psora-4 and PAP-1, inhibitors of the potassium channel Kv1.3, as a new and selective therapeutic strategy in chronic lymphocytic leukemia, Leukemia, 27, 1782, 10.1038/leu.2013.56
Quast, 2012, General Sensitization of melanoma cells for TRAIL-induced apoptosis by the potassium channel inhibitor TRAM-34 depends on release of SMAC, PLoS One, 7, e39290, 10.1371/journal.pone.0039290
Clark, 2010, ATP-sensitive potassium channels in health and disease, Adv. Exp. Med. Biol., 654, 165, 10.1007/978-90-481-3271-3_8
Nichols, 2013, KATP channels and cardiovascular disease: suddenly a syndrome, Circ. Res., 112, 1059, 10.1161/CIRCRESAHA.112.300514
Inoue, 1991, ATP-sensitive K+ channel in the mitochondrial inner membrane, Nature, 352, 244, 10.1038/352244a0
Quindry, 2010, Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts, Am. J. Physiol. Heart Circ. Physiol., 10.1152/ajpheart.01211.2009
Liu, 2010, Opening of the mitoKATP channel and decoupling of mitochondrial complex II and III contribute to the suppression of myocardial reperfusion hyperoxygenation, Mol. Cell. Biochem., 337, 25, 10.1007/s11010-009-0283-2
Yang, 2009, KR-31761, a novel K+(ATP)-channel opener, exerts cardioprotective effects by opening both mitochondrial K+(ATP) and Sarcolemmal K+(ATP) channels in rat models of ischemia/reperfusion-induced heart injury, J. Pharmacol. Sci., 109, 222, 10.1254/jphs.08132FP
Suzuki-Karasaki, 2014, Crosstalk between mitochondrial ROS and depolarization in the potentiation of TRAIL-induced apoptosis in human tumor cells, Int. J. Oncol., 44, 616, 10.3892/ijo.2013.2215
Huang, 2015, Mitochondrial KATP channels control glioma radioresistance by regulating ROS-Induced ERK activation, Mol. Neurobiol., 52, 626, 10.1007/s12035-014-8888-1
Patel, 2004, The 2P-domain K+ channels: role in apoptosis and tumorigenesis, Pflugers Arch., 448, 261, 10.1007/s00424-004-1255-8
Pei, 2003, Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function, Proc. Natl. Acad. Sci. U. S. A., 100, 7803, 10.1073/pnas.1232448100
Rusznak, 2008, Mitochondrial expression of the two-pore domain TASK-3 channels in malignantly transformed and non-malignant human cells, Virchows Arch., 452, 415, 10.1007/s00428-007-0545-x
Toczylowska-Maminska, 2014, Potassium channel in the mitochondria of human keratinocytes, J. Invest. Dermatol., 134, 764, 10.1038/jid.2013.422
Kosztka, 2011, Inhibition of TASK-3 (KCNK9) channel biosynthesis changes cell morphology and decreases both DNA content and mitochondrial function of melanoma cells maintained in cell culture, Melanoma Res., 21, 308, 10.1097/CMR.0b013e3283462713
Kajma, 2012, A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus, Biochim. Biophys. Acta, 1817, 1867, 10.1016/j.bbabio.2012.02.029
Kamer, 2015, The molecular era of the mitochondrial calcium uniporter, Nat. Rev. Mol. Cell Biol., 16, 545, 10.1038/nrm4039
Thu, 2012, NecroX-5 prevents hypoxia/reoxygenation injury by inhibiting the mitochondrial calcium uniporter, Cardiovasc. Res., 94, 342, 10.1093/cvr/cvs122
Cuong, 2016, Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan, Korean J. Physiol. Pharmacol., 20, 213, 10.4196/kjpp.2016.20.2.213
Herzig, 2013, Life without the mitochondrial calcium uniporter, Nat. Cell Biol., 15, 1398, 10.1038/ncb2891
Tosatto, 2016, The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1alpha, EMBO Mol. Med., 8, 569, 10.15252/emmm.201606255
Marchi, 2013, Mitochondrial calcium uniporter, MiRNA and cancer: live and let die, Commun. Integr. Biol., 6, e23818, 10.4161/cib.23818
Curry, 2013, Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells, Biochem. Biophys. Res. Commun., 434, 695, 10.1016/j.bbrc.2013.04.015
Marchi, 2013, Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25, Curr. Biol., 23, 58, 10.1016/j.cub.2012.11.026
Song, 2013, Mitochondrial modulation decreases the bortezomib-resistance in multiple myeloma cells, Int. J. Cancer, 10.1002/ijc.28149
Hall, 2014, Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival, PLoS One, 9, e96866, 10.1371/journal.pone.0096866
Venkatachalam, 2007, TRP channels, Annu. Rev. Biochem., 76, 387, 10.1146/annurev.biochem.75.103004.142819
Prevarskaya, 2007, TRP channels in cancer, Biochim. Biophys. Acta, 1772, 937, 10.1016/j.bbadis.2007.05.006
Zhao, 2017, Versatile roles of intracellularly located TRPV1 channel, J. Cell. Physiol., 232, 1957, 10.1002/jcp.25704
Hurt, 2016, Transient receptor potential vanilloid 1 regulates mitochondrial membrane potential and myocardial reperfusion injury, J. Am. Heart Assoc., 5, 10.1161/JAHA.116.003774
Miyake, 2015, Activation of mitochondrial transient receptor potential vanilloid 1 channel contributes to microglial migration, Glia, 10.1002/glia.22854
Nita, 2016, Privileged crosstalk between TRPV1 channels and mitochondrial calcium shuttling machinery controls nociception, Biochim. Biophys. Acta, 10.1016/j.bbamcr.2016.09.009
Feng, 2013, Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake, Proc. Natl. Acad. Sci. U. S. A., 110, 11011, 10.1073/pnas.1309531110
Bao, 2016, Depletion of the human ion channel TRPM2 in neuroblastoma demonstrates its key role in cell survival through modulation of mitochondrial ROS and bioenergetics, J. Biol. Chem., 10.1074/jbc.M116.747147
Amantini, 2007, Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation, J. Neurochem., 102, 977, 10.1111/j.1471-4159.2007.04582.x
Amantini, 2009, Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner, Carcinogenesis, 30, 1320, 10.1093/carcin/bgp138
Yang, 2009, Transient receptor potential channel C3 contributes to the progression of human ovarian cancer, Oncogene, 28, 1320, 10.1038/onc.2008.475
Wolf, 2009, Multidrug resistance phenotypes and MRS2 mitochondrial magnesium channel: two players from one stemness?, Cancer Biol. Ther., 8, 615, 10.4161/cbt.8.7.8152
Kolisek, 2003, Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria, EMBO J., 22, 1235, 10.1093/emboj/cdg122
Suh, 2007, CLIC4, skin homeostasis and cutaneous cancer: surprising connections, Mol. Carcinog., 46, 599, 10.1002/mc.20324
Fernandez-Salas, 2002, mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53, Mol. Cell. Biol., 22, 3610, 10.1128/MCB.22.11.3610-3620.2002
Peruzzo, 2016, Impact of intracellular ion channels on cancer development and progression, Eur. Biophys. J., 45, 685, 10.1007/s00249-016-1143-0
Chen, 2012, Mitochondrial dysfunction and cancer metastasis, J. Bioenergy Biomembr., 44, 619, 10.1007/s10863-012-9465-9
Gupta, 2006, Cancer metastasis: building a framework, Cell, 127, 679, 10.1016/j.cell.2006.11.001
Ishikawa, 2008, ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis, Science, 320, 661, 10.1126/science.1156906
Kulawiec, 2009, Cancer cell mitochondria confer apoptosis resistance and promote metastasis, Cancer Biol. Ther., 8, 1378, 10.4161/cbt.8.14.8751
Li, 2015, Down-regulation of NDUFB9 promotes Breast cancer cell proliferation, metastasis by mediating mitochondrial metabolism, PLoS One, 10, e0144441, 10.1371/journal.pone.0144441
Caino, 2015, PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion, Proc. Natl. Acad. Sci. U. S. A., 112, 8638, 10.1073/pnas.1500722112
Porporato, 2014, A mitochondrial switch promotes tumor metastasis, Cell Rep., 8, 754, 10.1016/j.celrep.2014.06.043
Goh, 2011, Mitochondrial targeted catalase suppresses invasive breast cancer in mice, BMC Cancer, 11, 191, 10.1186/1471-2407-11-191
Bonuccelli, 2010, Ketones and lactate fuel tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism, ABBV Cell Cycle, 9, 3506, 10.4161/cc.9.17.12731
Sotgia, 2012, Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the reverse Warburg effect in positive lymph node tissue, ABBV Cell Cycle, 11, 1445, 10.4161/cc.19841
LeBleu, 2014, PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis, Nat. Cell Biol., 16, 992, 10.1038/ncb3039
Luo, 2016, A PGC1alpha-mediated transcriptional axis suppresses melanoma metastasis, Nature, 537, 422, 10.1038/nature19347
Seo, 2016, The mitochondrial unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis, PLoS Biol., 14, e1002507, 10.1371/journal.pbio.1002507
Okon, 2015, Mitochondrial ROS and cancer drug resistance: implications for therapy, Pharmacol. Res., 100, 170, 10.1016/j.phrs.2015.06.013
Zhang, 2016, Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors, J. Clin. Invest., 126, 1834, 10.1172/JCI82661
Maiti, 2012, Reactive oxygen species reduction is a key underlying mechanism of drug resistance in cancer chemotherapy, Chemothe.: Open Access, 2012
Maiti, 2010, Gene network analysis of oxidative stress-mediated drug sensitivity in resistant ovarian carcinoma cells, Pharmacogenomics J., 10, 94, 10.1038/tpj.2009.49
Roesch, 2013, Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells, Cancer Cell, 23, 811, 10.1016/j.ccr.2013.05.003
Uddin, 2014, Anticancer strategy targeting mitochondrial biogenesis in ovarian cancer, J. Cancer Sci. Ther., 2014
Farnie, 2015, High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant, Oncotarget, 6, 30472, 10.18632/oncotarget.5401
Vazquez, 2013, PGC1-alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress, Cancer Cell, 23, 287, 10.1016/j.ccr.2012.11.020
Zhou, 2012, Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells, Cancer Res., 72, 304, 10.1158/0008-5472.CAN-11-1674
Clarke, 2006, Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells, Cancer Res., 66, 9339, 10.1158/0008-5472.CAN-06-3126
Reya, 2001, Stem cells, cancer, and cancer stem cells, Nature, 414, 105, 10.1038/35102167
Ye, 2011, Heterogeneity of mitochondrial membrane potential: a novel tool to isolate and identify cancer stem cells from a tumor mass?, Stem Cell Rev., 7, 153, 10.1007/s12015-010-9122-9
Loureiro, 2013, Mitochondria in cancer stem cells: a target for therapy, Recent Pat. Endocr. Metab. Immune Drug Discov., 7, 102, 10.2174/18722148113079990006
Song, 2015, Mitochondria as therapeutic targets for cancer stem cells, World J. Stem Cells, 7, 418, 10.4252/wjsc.v7.i2.418
Margineantu, 2016, Mitochondrial functions in stem cells, Curr. Opin. Genet. Dev., 38, 110, 10.1016/j.gde.2016.05.004
Song, 2015, FOXM1-Induced PRX3 regulates stemness and survival of colon cancer cells via maintenance of mitochondrial function, Gastroenterology, 149, 1006, 10.1053/j.gastro.2015.06.007
Sukumar, 2016, Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy, Cell Metab., 23, 63, 10.1016/j.cmet.2015.11.002
Chen, 2016, NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism, Cell Metab., 23, 206, 10.1016/j.cmet.2015.12.004
Dong, 2013, Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer, Cancer Cell, 23, 316, 10.1016/j.ccr.2013.01.022
Alvero, 2011, Targeting the mitochondria activates two independent cell death pathways in ovarian cancer stem cells, Mol. Cancer Ther., 10, 1385, 10.1158/1535-7163.MCT-11-0023
Hirsch, 2013, Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth, Proc. Natl. Acad. Sci., 110, 972, 10.1073/pnas.1221055110
Mayer, 2015, Metformin and prostate cancer stem cells: a novel therapeutic target, Prostate Cancer Prostatic Dis., 18, 303, 10.1038/pcan.2015.35
Sancho, 2015, MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells, Cell Metab., 22, 590, 10.1016/j.cmet.2015.08.015
Mantel, 2012, Mouse hematopoietic cell-targeted STAT3 deletion: stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging-like phenotype, Blood, 120, 2589, 10.1182/blood-2012-01-404004
Mellman, 2011, Cancer immunotherapy comes of age, Nature, 480, 480, 10.1038/nature10673
Scharping, 2016, The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral t cell metabolic insufficiency and dysfunction, Immunity, 45, 701, 10.1016/j.immuni.2016.08.009
Schietinger, 2016, Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis, Immunity, 45, 389, 10.1016/j.immuni.2016.07.011
La-Beck, 2015, Immune checkpoint inhibitors: new insights and current place in cancer therapy, Pharmacotherapy, 35, 963, 10.1002/phar.1643
Couzin-Frankel, 2013, Breakthrough of the year 2013. Cancer immunotherapy, Science, 342, 1432, 10.1126/science.342.6165.1432
Zhang, 2016, Aging: T cell metabolism within tumors, Aging (Albany NY), 8, 1163, 10.18632/aging.100979
Bengsch, 2016, Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion, Immunity, 45, 358, 10.1016/j.immuni.2016.07.008
Marrache, 2013, Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy, ACS Nano, 7, 7392, 10.1021/nn403158n
Balmer, 2016, Feeling worn out? PGC1alpha to the rescue for dysfunctional mitochondria in T cell exhaustion, Immunity, 45, 233, 10.1016/j.immuni.2016.07.024
Sanchez-Rivera, 2015, Applications of the CRISPR-Cas9 system in cancer biology, Nat. Rev. Cancer, 15, 387, 10.1038/nrc3950
Luo, 2016, CRISPR/Cas9: from genome engineering to cancer drug discovery, Trends Cancer, 2, 313, 10.1016/j.trecan.2016.05.001
Burr, 2016, Mitochondrial protein lipoylation and the 2-oxoglutarate dehydrogenase complex controls HIF1a stability in aerobic conditions, Cell Metab., 24, 740, 10.1016/j.cmet.2016.09.015
Brand, 2016, LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells, Cell Metab., 10.1016/j.cmet.2016.08.011
Birsoy, 2015, An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis, Cell, 162, 540, 10.1016/j.cell.2015.07.016
Arroyo, 2016, A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation, Cell Metab., 10.1016/j.cmet.2016.08.017
Dong, 2016, Focused screening of mitochondrial metabolism reveals a crucial role for a tumor suppressor Hbp1 in ovarian reserve, Cell Death Differ., 23, 1602, 10.1038/cdd.2016.47
Bao, 2016, Mitochondrial dysfunction remodels one-carbon metabolism in human cells, Elife, 5, 10.7554/eLife.10575
Wang, 2015, Eliminate mitochondrial diseases by gene editing in germ-line cells and embryos, Protein Cell, 6, 472, 10.1007/s13238-015-0177-x
Murphy, 2016, Mitochondrial diseases: shortcuts to therapies and therapeutic shortcuts, Mol. Cell, 64, 5, 10.1016/j.molcel.2016.09.022
Fogleman, 2016, CRISPR/Cas9 and mitochondrial gene replacement therapy: promising techniques and ethical considerations, Am. J. Stem Cells, 5, 39
Jo, 2015, Efficient mitochondrial genome editing by CRISPR/Cas9, BioMed Res. Int., 2015, 305716, 10.1155/2015/305716
Smith, 2012, Mitochondrial pharmacology, Trends Pharmacol. Sci., 33, 341, 10.1016/j.tips.2012.03.010
Vlashi, 2014, Metabolic differences in breast cancer stem cells and differentiated progeny, Breast Cancer Res. Treat., 146, 525, 10.1007/s10549-014-3051-2
Vlashi, 2011, Metabolic state of glioma stem cells and nontumorigenic cells, Proc. Natl. Acad. Sci. U. S. A., 108, 16062, 10.1073/pnas.1106704108
Janiszewska, 2012, Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells, Genes Dev., 26, 1926, 10.1101/gad.188292.112
Lagadinou, 2013, BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells, Cell Stem Cell, 12, 329, 10.1016/j.stem.2012.12.013
Ye, 2011, Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells, Int. J. Cancer, 129, 820, 10.1002/ijc.25944
Pasto, 2014, Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation, Oncotarget, 5, 4305, 10.18632/oncotarget.2010
