Current and emerging biodegradable mulch films based on polysaccharide bio-composites. A review
Tóm tắt
Since the 1940s, the introduction of plastic technology caused a true revolution in agriculture. Among the uses of plastics, mulch films have been used to improve yields and crop traits. They are useful to increase air and soil temperatures, protect plants from several agents, improve water management, reduce the growth of weeds, and, consequently, to avoid high dependence on agrochemicals. The low-density polyethylene obtained from non-renewable resources has been mainly used for this purpose due to its mechanical and barrier properties, resistance to all forms of degradation, easy processing and low cost. Unfortunately, low-density polyethylene presents several economic and environmental drawbacks related to their low biodegradability, their removal after the crop cycle and their final disposal. Hence, there is a great interest in using biodegradable mulch films to provide greater agricultural sustainability. In this review, we interpret evidence about the potential of polysaccharide-based bio-composite mulch films as a possible replacement of traditional low-density polyethylene films as well as their commercial barriers and evolution of intellectual property rights. We identified that: (1) mulch films improve their mechanical properties through the formulation of multiphase materials, reaching international standards; (2) biodegradability of bio-composite mulch films can be adjusted according to crop season; (3) bio-composite mulch films provide high yields for different crops; and (4) they are promising for the management of pests and weeds. Due to these traits, biodegradable mulch films have reported a significant increase in the number of patent protections lately. However, to the present day the lack of knowledge about bio-composite mulch films and their high costs are the main commercial limitations to their adoption for crop production systems in the field.
Tài liệu tham khảo
Abdul Khalil HPS, Chong EWN, Owolabi FAT, Asniza M, Tye YY, Rizal S, Nurul Fazita MR, Mohamad Haafiz MK, Nurmiati Z, Paridah MT (2018) Enhancement of basic properties of polysaccharide-based composites with organic and inorganic fillers: a review. J Appl Polym Sci 21:47251. https://doi.org/10.1002/app.47251
Andrade CS, Palha MDG, Duarte E (2014) Biodegradable mulch films performance for autumn-winter strawberry production. J Berry Res 4:193–202. https://doi.org/10.3233/JBR-140080
Arrieta MP, López J, López D, Kenny JM, Peponi L (2016) Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polym Degrad Stab 132:145–156. https://doi.org/10.1016/j.polymdegradstab.2016.02.027
Averous L, Boquillon N (2004) Biocomposites based on plasticized starch : thermal and mechanical behaviours. Carbohydr Polym 56(2):111–122. https://doi.org/10.1016/j.carbpol.2003.11.015
Averous L, Moro L, Dole P et al (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41:4157–4167. https://doi.org/10.1016/S0032-3861(99)00636-9
Ayu RS, Khalina A, Harmaen AS, Zaman K, Mohd Nurrazi N, Isma T, Lee CH (2020) Effect of Empty Fruit Brunch reinforcement in PolyButylene-Succinate/Modified Tapioca Starch blend for Agricultural Mulch Films. Sci Rep 10(1):1166. https://doi.org/10.1038/s41598-020-58278-y
Azeem B, Kushaari K, Man ZB et al (2014) Review on materials & methods to produce controlled release coated urea fertilizer. J Control Release 181:11–21. https://doi.org/10.1016/j.jconrel.2014.02.020
Baheti V, Militky J, Marsalkova M (2013) Mechanical properties of poly lactic acid composite films reinforced with wet milled jute nanofibers. Polym Compos 34(12):2133–2141. https://doi.org/10.1002/pc.22622
Bandopadhyay S, Martin-Closas L, Pelacho AM, DeBruyn JM (2018) Biodegradable plastic mulch films : impacts on soil microbial communities and ecosystem functions. Front Micrbiology 9:819. https://doi.org/10.3389/fmicb.2018.00819
Bandopadhyay S, Sintim HY, Debruyn JM (2020) Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems. PeerJ 8:e9015. https://doi.org/10.7717/peerj.9015
Barragán DH, Pelacho AM, Martin-Closas L (2016) Degradation of agricultural biodegradable plastics in the soil under laboratory conditions. Soil Res 54(2):216224. https://doi.org/10.1071/SR15034
Bilck AP, Grossmann MVE, Yamashita F (2010) Biodegradable mulch films for strawberry production. Polym Test 29(4):471–476. https://doi.org/10.1016/j.polymertesting.2010.02.007
Bodirlau R, Teaca C, Spiridon I (2013) Influence of natural fillers on the properties of starch-based biocomposite films. Compos Part B 44(1):575–583. https://doi.org/10.1016/j.compositesb.2012.02.039
Briassoulis D (2004) An overview on the mechanical behaviour of biodegradable agricultural films. J Polym Environ 12(2):65–81. https://doi.org/10.1023/B:JOOE.0000010052.86786.ef
Briassoulis D (2006) Mechanical behaviour of biodegradable agricultural films under real field conditions. Polym Degrad Stab 91(6):1256–1272. https://doi.org/10.1016/j.polymdegradstab.2005.09.016
Briassoulis D, Giannoulis A (2018) Evaluation of the functionality of bio-based plastic mulching films. Polymer Testing 67:99–109. https://doi.org/10.1016/j.polymertesting.2018.02.019
Briassoulis D, Mistriotis A, Mortier N, Tosin M (2020) A horizontal test method for biodegradation in soil of bio-based and conventional plastics and lubricants. J Clean Prod 242:118392. https://doi.org/10.1016/j.jclepro.2019.118392
Caruso G, Stoleru V, De Pascale S et al (2019) Production, Leaf Quality and Antioxidants of Perennial Wall Rocket as Affected by Crop Cycle and Mulching Type. Agronomy 9(4):194. https://doi.org/10.3390/agronomy9040194
Chaabouni E, Gassara F, Brar SK (2014) Biopolymers synthesis and application. In: Biotransformation of waste biomass into high value biochemicals. Springer, New York, pp 415–443
Chandra R, Rustgi R (1998) Biodegradable polymers. Progress in Polymer Science. 23:1273–1335
Chang PR, Jian R, Yu J, Ma X (2010) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120(3):736–740. https://doi.org/10.1016/j.foodchem.2009.11.002
Chiellini E, Cinelli P, Grillo Fernandes E et al (2001a) Composite materials based on gelatin and fillers from renewable resources. In: Biorelated polymers: sustainable polymer science and technology. Spinger, Boston, pp 101–114
Chiellini E, Cinelli P, Imam SH, Mao L (2001b) Composite films based on poly(vinylalcohol) and lignocellulosic fibers. In: Biorelated polymers: sustainable polymer science and technology. Spinger, Boston, pp 87–100
Chiellini E, Cinelli P, Ilieva VI, Martera M (2008) Biodegradable thermoplastic composites based on polyvinyl alcohol and algae. Biomacromolecules 9(3):1007–1013. https://doi.org/10.1021/bm701041e
Corti A, Cinelli P, D’Antone S et al (2002) Biodegradation of poly(vinyl alcohol) in soil environment: influence of natural organic fillers and structural parameters. Macromol Chem Phys 203(10-11):1526–1531. https://doi.org/10.1002/1521-3935(200207)203:10/11<1526::AID-MACP1526>3.0.CO;2-R
Costa R, Saraiva A, Carvalho L, Duarte E (2014) The use of biodegradable mulch films on strawberry crop in Portugal. Sci Hortic 173:65–70. https://doi.org/10.1016/j.scienta.2014.04.020
Cowan JS, Ghimire S, Miles CA (2016) Biodegradable mulch films: their constituents and suitability for organic agriculture. In: 2016 ASHS Annual Conference. American Society for Horticultural Science
Cozzolino E, Giordano M, Fiorentino N, El-Nakhel C et al (2020) Appraisal of Biodegradable Mulching Films and Vegetal-Derived Biostimulant Application as Eco-Sustainable Practices for Enhancing Lettuce Crop Performance and Nutritive Value. Agronomy. https://doi.org/10.3390/agronomy10030427
De Oliveira TA, Mota IDO, Mousinho EFP et al (2019) Biodegradation of mulch films from poly(butylene adipate co-terephthalate), carnauba wax, and sugarcane residue. J Appl Polym Sci 136:48240. https://doi.org/10.1002/app.48240
Donati I, Paoletti S (2009) Material properties of alginates. In: Alginates: biology and applications. Microbiology Monographs. Springer, Berlin, pp 1–53
EN 17033 (2018) Plastics - Biodegradable Mulch Films for Use in Agriculture and Horticulture - requirements and Test Methods. European Committee for Standardization, Brussels, Belgium
Finkenstadt VL, Tisserat B (2010) Poly(lactic acid) and Osage orange wood fiber composites for agricultural mulch films. Ind Crops Prod 31(2):316–320. https://doi.org/10.1016/j.indcrop.2009.11.012
Flores ED, Funabashi M, Kunioka M (2009) Mechanical properties and biomass carbon ratios of poly (butylene succinate) composites filled with starch and cellulose filler using furfural as plasticizer. J Appl Polym Sci 112(6):3410–3417. https://doi.org/10.1002/app.29777
Fowler PA, Hughes JM, Elias RM (2006) Biocomposites: technology, environmental credentials and market forces. J Sci Food Agric 86(12):1781–1789. https://doi.org/10.1002/jsfa.2558
França DC, Almeida TG, Abels G, Canedo EL, Carvalho LH, Wellen RMR, Haag K, Koschek K (2018) Tailoring PBAT/PLA/Babassu films for suitability of agriculture mulch application. J Nat Fibers 16:933–943. https://doi.org/10.1080/15440478.2018.1441092
Garrison TF, Murawsi A, Quirino RL (2016) Bio-based polymers with potential for biodegradability. Polymers 8(7):262. https://doi.org/10.3390/polym8070262
Ghimire S, Wszelaki AL, Moore JC et al (2018) The use of biodegradable mulches in pie pumpkin crop production in two diverse climates. HortScience 53(3):288–294. https://doi.org/10.21273/HORTSCI12630-17
Ghimire S, Flury M, Scheenstra EJ, Miles CA (2019) Sampling and degradation of biodegradable plastic and paper mulches in field after tillage incorporation. Sci Total Environ 135577. https://doi.org/10.1016/j.scitotenv.2019.135577.
Ghimire S, Scheenstra E, Miles CA (2020) Soil-biodegradable mulches for growth, yield, and quality of sweet corn in a Mediterranean-type climate. HortScience 55(3):317–325. https://doi.org/10.21273/HORTSCI14667-19
Goldberger JR, Jones RE, Miles CA, Wallace RW, Inglis DA (2013) Barriers and bridges to the adoption of biodegradable plastic mulches for US specialty crop production. Renew Agric Food Syst 30(2):143–153. https://doi.org/10.1017/S1742170513000276
Goldberger JR, Devetter LW, Dentzman KE (2019) Polyethylene and biodegradable plastic mulches for strawberry production in the United States: experiences and opinions of growers in three regions. Horttechnology 29(5):619–628. https://doi.org/10.21273/HORTTECH04393-19
Gu X-B, Li Y-N, Du Y-D (2017) Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil Tillage Res 171:42–50. https://doi.org/10.1016/j.still.2017.04.008
Guerrini S, Yan C, Malinconico M, Mormile P (2019) Agronomical overview of mulch film systems. In: Polymers for agri-food applications. Springer, Cham, pp 241–264
Haapala T, Palonen P, Korpela A et al (2014) Feasibility of paper mulches in crop production—a review. Agric Food Sci 23(1):60–79. https://doi.org/10.23986/afsci.8542
Han Y, Yu M, Wang L (2018) Soy protein isolate nanocomposites reinforced with nanocellulose isolated from licorice residue : water sensitivity and mechanical strength. Ind Crop Prod Prod 117:252–259. https://doi.org/10.1016/j.indcrop.2018.02.028
Hayes DG, Dharmalingam S, Wadsworth LC et al (2012) Biodegradable agricultural mulches derived from biopolymers. In: Degradable polymers and materials: principles and practice. ACS Symposium Series, Washington, pp 201–223
Hoffmann R, Morais DDS, Braz CJF, Haag K, Wellen RMR, Canedo EL, de Carvalho LH, Koschek K (2019) Impact of the natural filler babassu on the processing and properties of PBAT/PHB films. Compos Part A 124:105472. https://doi.org/10.1016/j.compositesa.2019.105472
Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocoll 44:172–182. https://doi.org/10.1016/j.foodhyd.2014.09.004
Huang Y, Liu Q, Jia W, Yan C, Wang J (2020) Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut 260:114096. https://doi.org/10.1016/j.envpol.2020.114096
Iapichino G, Mustazza G, Sabatino L, D’Anna F (2014) Polyethylene and biodegradable starch-based positively affect winter melon production in Sicily. Acta Hortic 1015:225–232. https://doi.org/10.17660/ActaHortic.2014.1015.25
Imam SH, Cinelli P, Gordon SH, Chiellini E (2005) Characterization of biodegradable composite films prepared from blends of poly(vinyl alcohol), cornstarch, and lignocellulosic fiber. J Polym Environ 13(1):47–55. https://doi.org/10.1007/s10924-004-1215-6
ISO 17556 (2019) Plastics - determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved. International Organization for Standardization, Geneva, Switzerland
Kader MA, Senge M, Mojid MA, Ito K (2017) Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res 168:155–166. https://doi.org/10.1016/j.still.2017.01.001
Kapanen A, Schettini E, Vox G, Itavaara M (2008) Performance and environmental impact of biodegradable films in agriculture : a field study on protected cultivation. J Polym Env 16(2):109–122. https://doi.org/10.1007/s10924-008-0091-x
Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32(2):501–529. https://doi.org/10.1007/s13593-011-0068-3
Khan RA, Salmieri S, Dussault D, Sharmin N, Lacroix M (2012) Mechanical, barrier, and interfacial properties of biodegradable composite films made of methylcellulose and poly (caprolactone). J Appl Polym Sci 123(3):1690–1697. https://doi.org/10.1002/app.34655
Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angewandte. Angew Chemie Int Ed 44(22):3358–3393. https://doi.org/10.1002/anie.200460587
Kumar TSM, Rajini N, Reddy KO et al (2018) All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers. Int J Biol Macromol 112:1310–1315. https://doi.org/10.1016/j.ijbiomac.2018.01.167
Kurita K (2006) Mini-review chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8(3):203–226. https://doi.org/10.1007/s10126-005-0097-5
Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15(2):125–150. https://doi.org/10.1007/s10924-007-0053-8
Li C, Moore-Kucera J, Lee J, Corbin A, Brodhagen M, Miles C, Inglis D (2014) Effects of biodegradable mulch on soil quality. App Soil Eco 79:59–69. https://doi.org/10.1016/j.apsoil.2014.02.012
Li J, Lai L, Wu L, Severtson SJ, Wang WJ (2018) Enhancement of water vapor barrier properties of biodegradable poly(butylene adipate-co-terephthalate) films with highly oriented organomontmorillonite. ACS Sustain Chem Eng 6(5):6654–6662. https://doi.org/10.1021/acssuschemeng.8b00430
Liang W, Zhao Y, Xiao D et al (2020) A biodegradable water-triggered chitosan/hydroxypropyl methylcellulose pesticide mulch film for sustained control of Phytophthora sojae in soybean (Glycine max L. Merr.). J Clean Prod 245:118943. https://doi.org/10.1016/j.jclepro.2019.118943
Liling G, Di Z, Jiachao X et al (2016) Effects of ionic crosslinking on physical and mechanical properties of alginate mulching films. Carbohydr Polym 136:259–265. https://doi.org/10.1016/j.carbpol.2015.09.034
Liu H, Chaudhary D, Ingram G, John J (2011) Interactions of hydrophilic plasticizer molecules with amorphous starch biopolymer—an investigation into the glass transition and the water activity behavior. J Polym Sci Part B Polym Phys 49(14):1041–1049. https://doi.org/10.1002/polb.22275
Majeed Z, Ramli NK, Mansor N, Man Z (2014) Starch biodegradation in a lignin modified slow release fertilizer: effect of thickness. Appl Mech Mater 625:830–833. https://doi.org/10.4028/www.scientific.net/AMM.625.830
Majeed Z, Mansor N, Ajab Z, Man Z (2017) Lignin macromolecule’s implication in slowing the biodegradability of urea crosslinked starch films applied as slow release fertilizer. Starch 69(11-12):1600362. https://doi.org/10.1002/star.201600362
Marí AI, Pardo G, Cirujeda A, Martínez Y (2019) Economic evaluation of biodegradable plastic films and paper mulches used in open-air grown pepper (Capsicum annum L.) Crop. Agronomy 9:36. https://doi.org/10.3390/agronomy9010036
Martín-Closas L, Bach MA, Pelacho AM (2008) Biodegradable mulching in an organic tomato production system. Acta Hortic 767:267–274. https://doi.org/10.17660/actahortic.2008.767.28
Martin-Closas L, Costa J, Pelacho AM (2017) Agronomic effects of biodegradable films on crop and field environment. In: Crop and field environment. Springer, Berlin, pp 67–104
Medina Jaramillo C, Gutiérrez TJ, Goyanes S, Bernal C, Famá L (2016) Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydr Polym 151:150–159. https://doi.org/10.1016/j.carbpol.2016.05.025
Merino D, Alvarez VA (2019) Green microcomposites from renewable resources : effect of seaweed (Undaria pinnatifida) as filler on corn starch – chitosan film properties. J Polym Environ 28:500–516. https://doi.org/10.1007/s10924-019-01622-9
Merino D, Gutiérrez TJ, Mansilla AY, Casalongué CA, Alvarez VA (2018a) Critical evaluation of starch-based antibacterial nanocomposites as agricultural mulch films: study on their interactions with water and light. ACS Sustain Chem Eng 6:15662–15672. https://doi.org/10.1021/acssuschemeng.8b04162
Merino D, Mansilla AY, Gutiérrez TJ, Casalongué CA, Alvarez VA (2018b) Chitosan coated-phosphorylated starch films: water interaction, transparency and antibacterial properties. React Funct Polym 131:445–453. https://doi.org/10.1016/j.reactfunctpolym.2018.08.012
Merino D, Mansilla AY, Casalongué CA, Alvarez VA (2019a) Performance of bio-based polymeric agricultural mulch films. In: Polymers for agri-food applications. Springer, Cham, pp 215–240
Merino D, Gutiérrez TJ, Alvarez VA (2019b) Potential agricultural mulch films based on native and phosphorylated corn starch with and without surface functionalization with chitosan. J Polym Environ 27:97–105. https://doi.org/10.1007/s10924-018-1325-1
Miles C, Wallace R, Wszelaki A et al (2012) Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. HortScience 47(9):1270–1277. https://doi.org/10.21273/HORTSCI.47.9.1270
Minuto G, Pisi L, Tinivella F et al (2008) Weed control with biodegradable mulch in vegetable crops. Acta Hortic 801:291–298. https://doi.org/10.17660/ActaHortic.2008.801.29
Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1-2):19–26. https://doi.org/10.1023/a:1021013921916
Moreno MM, Moreno A (2008) Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci Hortic 116(3):256–263. https://doi.org/10.1016/j.scienta.2008.01.007
Moreno MM, Moreno A, Mancebo I (2009) Comparison of different mulch materials in a tomato (Solanum lycopersicum L.) crop. Spanish J ofAgricultural Res 7(2):454–464. https://doi.org/10.5424/sjar/2009072-1500
Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C (2019) Prospect of polysaccharide-based materials as advanced food packaging. Molecules 25(1):135. https://doi.org/10.3390/molecules25010135
Patil NV, Netravali AN (2016) Microfibrillated cellulose-reinforced nonedible starch-based thermoset biocomposites. J Appl Polym Sci 133(45):43803. https://doi.org/10.1002/app.43803
Pua F-L, Sapuan SM, Zainudin ES, Adib MZ (2013) Effect of fibre surface modification on properties of kenaf/poly(vinyl alcohol) composite film. J Biobased Mater Bioenergy 7(1):95–101. https://doi.org/10.1166/jbmb.2013.1270
Rudnik E, Briassoulis D (2011) Comparative Biodegradation in soil behaviour of two biodegradable polymers based on renewable resources. J Polym Environ 19(1):18–39. https://doi.org/10.1007/s10924-010-0243-7
Rychter P, Kot M, Bajer K, Rogacz D, Šišková A, Kapuśniak J (2016) Utilization of starch films plasticized with urea as fertilizer for improvement of plant growth. Carbohydr Polym 137:127–138. https://doi.org/10.1016/j.carbpol.2015.10.051
Sander M (2019) Biodegradation of polymeric mulch films in agricultural soils: concepts, knowledge gaps, and research directions. Environ Sci Technol 53:2304–2315. https://doi.org/10.1021/acs.est.8b05208
Sarkar DJ, Barman M, Bera T et al (2018) Agriculture : polymers in crop production mulch and fertilizer. In: Encyclopedia of polymer applications. Taylor & Francis, London, pp 1–20. https://doi.org/10.1201/9781351019422-140000083
Scarascia-Mugnozza G, Sica C, Picuno P (2008) The optimisation of the management of agricultural plastic waste in Italy using a geographical information system. Acta Hortic 801:219–226. https://doi.org/10.17660/ActaHortic.2008.801.20
Sekara A, Pokluda R, Cozzolino E et al (2019) Plant growth, yield, and fruit quality of tomato affected by biodegradable and non-degradable mulches. Hortic Sci 46(3):138–145. https://doi.org/10.17221/218/2017-HORTSCI
Sen C, Das M (2018) Biodegradability of starch based self-supporting antimicrobial film and its effect on soil quality. J Polym Environ 26:4331–4337. https://doi.org/10.1007/s10924-018-1304-6
Serrano-Ruíz H, Martín-Closas L, Pelacho AM (2018) Application of an in vitro plant ecotoxicity test to unused biodegradable mulches. Polym Degrad Stab 158:102–110. https://doi.org/10.1016/j.polymdegradstab.2018.10.016
Serrano-Ruiz H, Martín-Closas L, Pelacho AM (2021) Biodegradable plastic mulches: impact on the agricultural biotic environment. Sci Total Environ 750:141228. https://doi.org/10.1016/j.scitotenv.2020.141228
Singh R, Shitiz K, Singh A (2017) Chitin and chitosan: biopolymers for wound management. Int Wound J 14(6):1276–1289. https://doi.org/10.1111/iwj.12797
Sintim HY, Bary AI, Hayes DG, Wadsworth LC, Anunciado MB, English ME, Bandopadhyay S, Schaeffer SM, DeBruyn JM, Miles CA, Reganold JP, Flury M (2020) In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci Total Environ 727:138668. https://doi.org/10.1016/j.scitotenv.2020.138668
Sintim HY, Bandopadhyay S, English ME, Bary A, Liquet y González JE, DeBruyn JM, Schaeffer SM, Miles CA, Flury M (2021) Four years of continuous use of soil-biodegradable plastic mulch: impact on soil and groundwater quality. Geoderma 381:114665. https://doi.org/10.1016/j.geoderma.2020.114665
Solaro R, Corti A, Chiellini E (1998) A new respirometric test simulating soil burial conditions for the evaluation of polymer biodegradation. J Enviromental Polym Degrad 6(4):203–208. https://doi.org/10.1023/A:1021877732070
Spiridon I, Teaca C, Bodirlau R (2011) Preparation and characterization of adipic acid-modified starch microparticles/plasticized starch composite films reinforced by lignin. J Mater Sci 46(10):3241–3251. https://doi.org/10.1007/s10853-010-5210-0
Stasi E, Giuri A, Ferrari F, Armenise V, Colella S, Listorti A, Rizzo A, Ferraris E, Esposito Corcione C (2020) Biodegradable carbon-based ashes/maize starch composite films for agricultural applications. Polymers 12(3):524. https://doi.org/10.3390/polym12030524
Sun T, Li G, Ning T et al (2018) Suitability of mulching with biodegradable fi lm to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut. Agric Water Manag 208:214–223. https://doi.org/10.1016/j.agwat.2018.06.027
Sun K, Li F, Li J, Li JF, Zhang CW, Chen S, Sun X, Cui JF (2019) Optimisation of compatibility for improving elongation at break of chitosan/starch films. RSC Adv 9(42):24451–24459. https://doi.org/10.1039/c9ra04053f
Tan Z, Yi Y, Wang H, Zhou W, Yang Y, Wang C (2016) Physical and degradable properties of mulching films prepared from natural fibers and biodegradable polymers. Appl Sci 6(5):147. https://doi.org/10.3390/app6050147
Thompson AA, Samuelson MB, Kadoma I, Soto-Cantu E, Drijber R, Wortman SE (2019) Degradation rate of bio-based agricultural mulch is influenced by mulch composition and biostimulant application. J Polym Environ 27:498–509. https://doi.org/10.1007/s10924-019-01371-9
Tian Y, Wang HW (2020) Polyhydroxyalkanoates for biodegradable mulch films applications. In: Sustainability & green polymer chemistry volume 2: biocatalysis and biobased polymers. ACS Symposium Series, Washington, pp 145–160. https://doi.org/10.1021/bk-2020-1373.ch008
Van Norman GA, Eisenkot R (2017) Technology transfer: from the research bench to commercialization: part 1: intellectual property rights—basics of patents and copyrights. JACC Basic to Transl Sci 2(1):85–97. https://doi.org/10.1016/j.jacbts.2017.01.003
Velandia M, Galinato S, Wszelaki A (2020) Economic evaluation of biodegradable plastic films in Tennessee pumpkin production. Agronomy 10:51. https://doi.org/10.3390/agronomy10010051
Vetrano F, Fascella S, Iapichino G et al (2009) Response of melon genotypes to polyethylene and biodegradable starch-based mulching films used for fruit production in the western coast of Sicily. Acta Hortic 807:109–114. https://doi.org/10.17660/actahortic.2009.807.12
Wang J, Cheng F, Zhu P (2014) Structure and properties of urea-plasticized starch films with different urea contents. Carbohydr Polym 101:1109–1115. https://doi.org/10.1016/j.carbpol.2013.10.050
Wang H, Wei D, Zheng A, Xiao H (2015) Soil burial biodegradation of antimicrobial biodegradable PBAT films. Polym Degrad Stab 116:14–22. https://doi.org/10.1016/j.polymdegradstab.2015.03.007
Wang Z, Wu Q, Fan B, Zhang J, Li W, Zheng X, Lin H, Guo L (2019) Testing biodegradable films as alternatives to plastic films in enhancing cotton (Gossypium hirsutum L.) yield under mulched drip irrigation. Soil Tillage Res 192:196–205. https://doi.org/10.1016/j.still.2019.05.004
Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate). Carbohydr Polym 123:275–282. https://doi.org/10.1016/j.carbpol.2015.01.058
Wu M, Gao F, Yin D et al (2018) Processing of superfine grinding corn straw fiber-reinforced starch film and the enhancement on its mechanical properties. Polymers 10(8):855. https://doi.org/10.3390/polym10080855
Yang Y, Li P, Jiao J, Yang Z, Lv M, Li Y, Zhou C, Wang C, He Z, Liu Y, Song S (2020) Renewable sourced biodegradable mulches and their environment impact. Sci Hortic 268:109375. https://doi.org/10.1016/j.scienta.2020.109375
Yin M, Li Y, Fang H, Chen P (2019) Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth. Agric Water Manag 216:127–137. https://doi.org/10.1016/j.agwat.2019.02.004
Zhang Y, Han JH, Kim GN (2008) Biodegradable mulch film made of starch-coated paper and its effectiveness on temperature and moisture content of soil. Commun Soil Sci Plant Anal 39(7-8):1026–1040. https://doi.org/10.1080/00103620801925448
Zhang H, Miles C, Ghimire S, Benedict C et al (2019) Polyethylene and biodegradable plastic mulches improve growth, yield, and weed management in floricane red raspberry. Scientia Horticultura https://doi.org/10.1016/j.scienta.2019.02.067
Zhang H, DeVetter LW, Scheenstra E et al (2020) Weed pressure, yield, and adhesion of soil-biodegradable mulches with pie pumpkin (Cucurbita pepo). Hor.tScience 55(7):1014–1021. https://doi.org/10.21273/HORTSCI15017-20
Zhao Y, Qiu J, Xu J, Gao X, Fu X (2017) Effects of crosslinking modes on the film forming properties of kelp mulching films. Algal Res 26:74–83. https://doi.org/10.1016/j.algal.2017.07.006
Zheng W, Zhang M, Liu Z, Zhou H, Lu H, Zhang W, Yang Y, Li C, Chen B (2016) Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system. F Crop Res 197:52–62. https://doi.org/10.1016/j.fcr.2016.08.004