Tình Trạng Hiện Tại của Các Khung Kim Loại-Hữu Cơ Microporous trong Tách Chất Hydrocarbon

Springer Science and Business Media LLC - Tập 377 - Trang 1-34 - 2019
Jiyan Pei1, Kai Shao1, Ling Zhang1, Hui-Min Wen2, Bin Li1, Guodong Qian1
1State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, People’s Republic of China
2College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, People’s Republic of China

Tóm tắt

Việc tách các hỗn hợp hydrocarbon thành các thành phần đơn lẻ là một quá trình công nghiệp rất quan trọng vì tất cả đều đại diện cho các nguồn năng lượng/hoá chất thô quan trọng trong ngành công nghiệp hóa dầu. Công nghệ tách công nghiệp đã được thiết lập phụ thuộc nhiều vào các quy trình chưng cất cryogenic tiêu tốn năng lượng. Sự phát hiện ra các vật liệu mới có khả năng tách các hỗn hợp hydrocarbon bằng công nghệ tách dựa trên chất hấp thụ có tiềm năng cung cấp các quy trình công nghiệp hiệu quả năng lượng hơn với những tiết kiệm năng lượng đáng kể. Các khung kim loại-hữu cơ (MOFs), còn được biết đến với tên gọi là polymer phối hợp xốp, đại diện cho một lớp vật liệu xốp mới mang lại hứa hẹn lớn trong các ứng dụng tách hydrocarbon nhờ vào khả năng điều chỉnh dễ dàng, thiết kế và chức năng. Một số MOFs đã được thiết kế và tổng hợp để cho thấy hiệu suất tách xuất sắc trong các ứng dụng tách hydrocarbon khác nhau. Tại đây, chúng tôi tóm tắt và làm nổi bật một số tiến bộ quan trọng gần đây trong việc phát triển các MOFs microporous cho các ứng dụng tách hydrocarbon.

Từ khóa

#tách hydrocarbon #khung kim loại-hữu cơ #MOFs #vật liệu xốp #công nghệ tách #hiệu suất tách

Tài liệu tham khảo

Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nature 532(7600):435 Peplow M (2015) Materials science: the hole story. Nature 520(7546):148–150 Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477–1504 Kitagawa S, Kitaura R, Noro SI (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375 Furukawa H et al (2013) The chemistry and applications of metal–organic frameworks. Science 341(6149):974 Maurin G et al (2017) The new age of MOFs and of their porous-related solids. Chem Soc Rev 46(11):3104–3107 Li B et al (2016) Emerging multifunctional metal-organic framework materials. Adv Mater 28(40):8819–8860 O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem Rev 112(2):675–702 Lu WG et al (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43(16):5561–5593 Yaghi OM (2016) Reticular chemistry-construction, properties, and precision reactions of frameworks. J Am Chem Soc 138(48):15507–15509 Guillerm V et al (2014) A supermolecular building approach for the design and construction of metal–organic frameworks. Chem Soc Rev 43(16):6141–6172 Sumida K et al (2012) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112(2):724–781 Yan Y et al (2014) Studies on metal–organic frameworks of Cu(II) with Isophthalate linkers for hydrogen storage. Acc Chem Res 47(2):296–307 Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 43(16):933–969 Wen HM et al (2018) A metal–organic framework with optimized porosity and functional sites for high gravimetric and volumetric methane storage working capacities. Adv Mater 30(16):1704792 Deng H et al (2012) Large-pore apertures in a series of metal–organic frameworks. Science 336(6084):1018–1023 Eddaoudi M et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472 Cui Y et al (2016) Metal–organic frameworks as platforms for functional materials. Acc Chem Res 49(3):483–493 Li B et al (2016) Applications of metal–organic frameworks featuring multi-functional sites. Cood Chem Rev 307:106–129 Wen HM et al (2019) A metal–organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO2 capture. J Mater Chem A 7(7):3128–3134 Bai Y et al (2016) Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45(8):2327–2367 Furukawa SH et al (2014) Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem Soc Rev 43(16):5700–5734 Zhang Z et al (2014) Perspective of microporous metal–organic frameworks for CO2 capture and separation. Energy Environ Sci 7(9):2868–2899 Wang C, Liu D, Lin W (2013) Metal–organic frameworks as a tunable platformfor designing functional molecular materials. J Am Chem Soc 135:13222–13234 Li JR, Sculley J, Zhou HC (2012) Metal–organic frameworks for separations. Chem Rev 112(2):869–932 Wu HH et al (2012) Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem Rev 112(2):836 Herm ZR, Bloch ED, Long JR (2013) Hydrocarbon separations in metal–organic frameworks. Chem Mater 26(26):323–338 Bao Z et al (2016) Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy Environ Sci 9(12):3612–3641 Adil K et al (2017) Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem Soc Rev 46(11):3402 Zhao X et al (2018) Metal–organic frameworks for separation. Adv Mater 30(37):1705189 Cui WG, Hu TL, Bu XH (2019) Metal–organic framework materials for the separation and purification of light hydrocarbons. Adv Mater. https://doi.org/10.1002/adma.201806445 Zhang JP et al (2014) Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem Soc Rev 43(16):5789–5814 Li J, Sun J (2017) Application of X-ray diffraction and electron crystallography for solving complex structure problems. Acc Chem Res 50(11):2737–2745 Das MC et al (2011) A new approach to construct a doubly interpenetrated microporous metal–organic framework of primitive cubic net for highly selective sorption of small hydrocarbon molecules. Chem Eur J 17(28):7817–7822 He Y et al (2012) A microporous metal–organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperature. Chem Eur J 18(2):613–619 He Y et al (2012) High separation capacity and selectivity of C2 hydrocarbons over methane within a microporous metal–organic framework at room temperature. Chem Eur J 18(7):1901–1904 He Y, Krishna R, Chen B (2012) Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ Sci 5(10):9107–9120 Horike S et al (2012) A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6 gas separation: equilibrium and kinetic studies. Chem Sci 3(1):116–120 Ma SQ et al (2010) A mesh-adjustable molecular sieve for general use in gas separation. Angew Chem Int Ed 46(14):2458–2462 Ma SQ et al (2009) Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure. J Am Chem Soc 131(18):6445–6451 Peng YL et al (2018) Robust ultramicroporous metal–organic frameworks with benchmark affinity for acetylene. Angew Chem Int Ed 57:10971–10975 Zhang Y et al (2019) A microporous metal–organic framework supramolecularly assembled from a CuII dodecaborate cluster complex for selective gas separation. Angew Chem Int Ed 58(24):8145–8150 Xiang SC et al (2011) Rationally tuned micropores within enantiopure metal–organic frameworks for highly selective separation of acetylene and ethylene. Nat Commun 2(1):1–7 Bloch ED et al (2012) Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335(6076):1606 Yang S et al (2015) Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nat Chem 7(2):121–129 Das MC et al (2012) Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M’MOFs) for their highly selective separation of chiral and achiral small molecules. J Am Chem Soc 134(20):8703–8710 Wen HM et al (2016) High acetylene/ethylene separation in a microporous zinc(II) metal–organic framework with low binding energy. Chem Commun 52(6):1166–1169 Li L et al (2017) Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal–organic framework. J Mater Chem A 5(36):18984–18988 Zaworotko MJ et al (2018) Impact of partial interpenetration in a hybrid ultramicroporous material on C2H2/C2H4 separation performance. Chem Commun 54(28):3488–3491 Jin G-X et al (2018) APPT-Cd MOF: acetylene adsorption mechanism and its highly efficient acetylene/ethylene separation at room temperature. Chem Mater 30(21):7433–7437 Hu TL et al (2015) Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nat Commun 6:7328 Cui X et al (2016) Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353(6295):141–144 Li B et al (2017) An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv Mater 29(47):1704210 Li J et al (2019) Metal–organic framework containing planar metal-binding sites: efficiently and cost-effectively enhancing the kinetic separation of C2H2/C2H4. J Am Chem Soc 141(9):3807–3811 Li L et al (2017) Flexible-robust metal–organic framework for efficient removal of propyne from propylene. J Am Chem Soc 139(23):7733–7736 Yang L et al (2018) Gas separation: a single-molecule propyne trap: highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials. Adv Mater 30(10):1870068 Wen HM et al (2018) Fine-tuning of nano-traps in a stable metal–organic framework for highly efficient removal of propyne from propylene. J Mater Chem A 6(16):6931–6937 Li L et al (2018) A metal–organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene. Angew Chem Int Ed 130(46):15403–15408 Yang L et al (2018) A highly sensitive flexible metal–organic framework sets a new benchmark for separating propyne from propylene. J Mater Chem A 6:24452–24458 Yang L et al (2018) An asymmetric anion-pillared metal–organic framework as a multisite adsorbent enables simultaneous removal of propyne and propadiene from propylene. Angew Chem Int Ed 130(40):13329–13333 Peng YL et al (2019) Robust microporous metal–organic frameworks for highly efficient and simultaneous removal of propyne and propadiene from propylene. Angew Chem Int Ed. https://doi.org/10.1002/anie.201904312 Ferreira AFP et al (2011) Suitability of Cu-BTC extrudates for propane–propylene separation by adsorption processes. Chem Eng J 167(1):1–12 Bae YS et al (2012) High propene/propane selectivity in isostructural metal–organic frameworks with high densities of open metal sites. Angew Chem Int Ed 51(8):1857–1860 Canan G et al (2010) Ethane/ethene separation turned on its head: selective ethane adsorption on the metal–organic framework ZIF-7 through a gate-opening mechanism. J Am Chem Soc 132(50):17704–17706 Nour N et al (2012) Tuning the gate opening pressure of metal–organic frameworks (MOFs) for the selective separation of hydrocarbons. J Am Chem Soc 134(37):15201 Li K et al (2014) Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J Am Chem Soc 131(30):10368–10369 Li BY et al (2014) Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J Am Chem Soc 136(24):8654–8660 Bachman JE et al (2017) M2(m-dobdc) (M=Mn, Fe Co, Ni) metal–organic frameworks as highly selective, high-capacity adsorbents for olefin/paraffin separations. J Am Chem Soc 139(43):15363 Bao Z et al (2018) Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal–organic frameworks. Angew Chem Int Ed 130(49):16252–16257 Bereciartua PJ et al (2017) Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science 358(6366):1068 Lin RB et al (2018) Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat Mater 17(12):1128–1133 Wang Y et al (2019) Pore size reduction in zirconium metal–organic frameworks for ethylene/ethane separation. ACS Sustain Chem Eng 7(7):7118–7126 Liao PQ et al (2015) Efficient purification of ethene by an ethane-trapping metal–organic framework. Nat Commun 6:8697 Lin RB et al (2018) Boosting ethane/ethylene separation within isoreticular ultramicroporous metal–organic frameworks. J Am Chem Soc 140(40):12940–12946 Qazvini OT et al (2019) A robust ethane-trapping metal–organic framework with a high capacity for ethylene purification. J Am Chem Soc 141(12):5014–5020 Li L et al (2018) Ethane/ethylene separation in a metal–organic framework with iron-peroxo sites. Science 362(6413):443 Wang X et al (2019) Pore environment engineering in metal–organic frameworks for efficient ethane/ethylene separation. J Mater Chem A 7(22):13585–13590 Hao HG et al (2018) Simultaneous trapping of C2H2 and C2H6 from a ternary mixture of C2H2/C2H4/C2H6 in a robust metal–organic framework for the purification of C2H4. Angew Chem Int Ed 130(49):16299–16303 Cadiau A et al (2016) A metal–organic framework-based splitter for separating propylene from propane. Science 353(6295):137 Wang H et al (2018) Tailor-made microporous metal–organic frameworks for the full separation of propane from propylene through selective size exclusion. Adv Mater 30(49):1805088 Wang Y et al (2019) Selective aerobic oxidation of a metal–organic framework boosts thermodynamic and kinetic propylene/propane selectivity. Angew Chem Int Ed 58:7692–7696 Cui J et al (2019) Efficient separation of n-butene and iso-butene by flexible ultramicroporous metal–organic frameworks with pocket-like cavities. Chem-Asian J. https://doi.org/10.1002/asia.201900735 Assen AH et al (2016) Ultra-tuning of the rare-earth fcu-mof aperture size for selective molecular exclusion of branched paraffins. Angew Chem Int Ed Eng 54(48):14586 Zhang Z et al (2017) Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew Chem Int Ed 56(51):16282 Liao PQ et al (2017) Controlling guest conformation for efficient purification of butadiene. Science 356(6343):1193 Bárcia PS et al (2007) Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal–organic framework. J Phys Chem B 111(22):6101–6103 Pan L et al (2006) Separation of hydrocarbons with a microporous metal–organic framework. Angew Chem Int Ed 45(4):616–619 Wang H, Li J (2019) Microporous metal–organic frameworks for adsorptive separation of C5–C6 alkane isomers. Acc Chem Res. https://doi.org/10.1021/acs.accounts.8b00658 Herm ZR et al (2013) Separation of hexane isomers in a metal–organic framework with triangular channels. Science 340(6135):960–964 Hao W et al (2018) One-of-a-kind: a microporous metal–organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving. Energy Environ Sci 11:1226–1231 Wang H et al (2018) Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat Commun 9(1):1745 Torres-Knoop A, Krishna R, Dubbeldam D (2014) Separating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8. Angew Chem Int Ed 53(30):7774–7778 Gonzalez MI et al (2018) Separation of xylene isomers through multiple metal site interactions in metal–organic frameworks. J Am Chem Soc 140(9):3412–3422 Chen BL et al (2006) A microporous metal–organic framework for gas-chromatographic separation of alkanes. Angew Chem Int Ed 45(9):1390–1393 Gu ZY, Yan XP (2010) Metal–organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew Chem Int Ed 49(8):1477–1480 Finsy V et al (2008) Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal–organic framework MIL-47. J Am Chem Soc 130(22):7110–7118 Finsy V et al (2010) Framework breathing in the vapour-phase adsorption and separation of xylene isomers with the metal–organic framework MIL-53. Chem Eur J 15(31):7724–7731 He CT et al (2015) Exceptional hydrophobicity of a large-pore metal–organic zeolite. J Am Chem Soc 137(22):7217–7223 Wee LH et al (2016) 1D–2D–3D transformation synthesis of hierarchical metal-organic framework adsorbent for multicomponent alkane separation. J Am Chem Soc 139(2):819–828 Bury W et al (2018) Rational design of noncovalent diamondoid microporous materials for low-energy separation of C6-hydrocarbons. J Am Chem Soc 140(44):15031–15037 Li Y et al (2019) Cryo-EM structures of atomic surfaces and host-guest chemistry in metal–organic frameworks. Matter. https://doi.org/10.1016/j.matt.2019.06.001 Bétard A, Fischer RA (2012) Metal-organic framework thin films: from fundamentals to applications. Chem Rev 112(2):1055–1083 Qiu S, Xue M, Zhu G (2014) Metal–organic framework membranes: from synthesis to separation application. Chem Soc Rev 43(16):6116–6140 Lin JY (2016) Molecular sieves for gas separation. Science 353(6295):121