Current Methods in Medical Image Segmentation

Annual Review of Biomedical Engineering - Tập 2 Số 1 - Trang 315-337 - 2000
Dzung L. Pham1,2, Chenyang Xu3,2, Jerry L. Prince3,2
1Department of Electrical and Computer Engineering, Johns Hopkins University, Laboratory of Personality and Cognition, National Institute on Aging, Baltimore, Maryland, USA.
2Laboratory of Personality and Cognition, National Institute on Aging, Baltimore, Maryland 21224
3Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218

Tóm tắt

▪ Abstract  Image segmentation plays a crucial role in many medical-imaging applications, by automating or facilitating the delineation of anatomical structures and other regions of interest. We present a critical appraisal of the current status of semiautomated and automated methods for the segmentation of anatomical medical images. Terminology and important issues in image segmentation are first presented. Current segmentation approaches are then reviewed with an emphasis on the advantages and disadvantages of these methods for medical imaging applications. We conclude with a discussion on the future of image segmentation methods in biomedical research.

Từ khóa


Tài liệu tham khảo

Larie SM, 1998, J. Psychol., 172, 110

10.1259/0007-1285-68-813-945

Zijdenbos AP, 1994, Crit. Rev. Biomed. Eng., 22, 401

10.1142/S0218001497000548

10.1016/S0167-8140(96)01866-X

10.1142/S0218001497000639

10.1016/S0734-189X(85)90153-7

Gonzalez RC, 1992, Digital Image Processing.

10.1016/0031-3203(93)90135-J

10.1109/83.660995

10.1109/42.563663

10.1142/S021800149700055X

10.1109/42.511746

10.1162/jocn.1992.4.4.352

10.1109/42.552054

10.1109/34.730559

10.1016/S0019-9958(65)90241-X

10.1016/S0167-8655(98)00121-4

10.1002/jmri.1880060303

10.1109/51.195944

10.1109/42.511747

10.1109/42.97590

10.1002/mrm.1910320117

10.1109/42.730409

10.1109/42.251128

10.1109/42.370400

10.1109/42.700729

10.1109/42.668698

10.1109/78.127962

10.1109/42.650883

10.1016/0898-1221(88)90119-8

10.1088/0031-9155/43/11/009

10.1109/42.126911

10.1109/42.712135

10.1109/42.640755

10.1016/0031-3203(95)00169-7

10.1118/1.597000

10.1016/0730-725X(94)00124-L

10.1016/0730-725X(95)00012-6

10.1109/72.159057

10.1016/0734-189X(88)90022-9

10.1002/mrm.1910370320

10.1088/0031-9155/41/3/011

10.1109/42.650877

10.1109/42.712133

10.1109/42.414622

10.1016/S0010-4825(98)00013-4

10.1088/0031-9155/41/11/014

10.1118/1.597707

10.1006/cbmr.1998.1489

10.1007/BF01250286

10.1006/gmip.1996.0021

Schalkoff RJ, 1992, Pattern Recognition: Statistical, Structural and Neural Approaches.

10.1148/radiology.154.1.3964938

10.1007/BFb0056231

10.1109/PROC.1979.11327

10.1109/42.310875

Jain AK, 1988, Algorithms for Clustering Data.

10.1109/23.597014

10.1007/978-4-431-66933-3

Besag J, 1986, CVGIP: Image Underst., 57, 359

10.1109/TPAMI.1984.4767596

10.1006/gmip.1997.0443

10.1088/0031-9155/36/10/001

Haykin S, 1994, Neural Networks: A Comprehensive Foundation.

10.1109/5.537113

10.1109/42.650887

10.1016/S0167-8655(98)00050-6

10.1109/42.544496

10.1007/BFb0029221

Xu C, Pham DL, Prince JL, Etemad ME, Yu D. 1998. Reconstruction of the central layer of the human cerebral cortex from MR images. InProc. Int. Conf. Med. Image Comput. Comp. Assist. Interv., 1st, Cambridge, MA, pp. 482–88

10.1006/cviu.1997.0595

10.1016/S0895-6111(98)00015-9

10.1109/42.700739

10.1016/1049-9660(91)90028-N

10.1007/BF01385685

10.1109/34.368173

10.1109/83.661186

10.1109/ICCV.1995.466850

10.1016/S1361-8415(96)80007-7

10.1016/S1361-8415(01)80026-8

Talairach J, Tournoux P. 1988. Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Stuttgart, Ger. Thieme. 122 pp.

10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4

10.1097/00004728-199601000-00018

10.1002/hbm.460030304

10.1097/00004728-199607000-00031

10.1109/42.650882

Aboutanos GB, Dawant BM. 1997. Automatic brain segmentation and validation: image-based versus atlas-based deformable models. InSPIE Proc. Med. Imag. 3034:299–310

10.1016/S1361-8415(97)85002-5

10.1142/S0218001497000615

10.1109/42.736032

10.1118/1.597064

10.1109/34.87344

10.1016/S0730-725X(97)00033-7

10.1109/34.589209

10.1109/83.552077