Current Advances in Quantum‐Dots‐Based Photoelectrochemical Immunoassays

Chemistry - An Asian Journal - Tập 12 Số 21 - Trang 2780-2789 - 2017
Jian Shu1, Dianping Tang1
1Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Collaborative Innovation Center of Detection Technology for Haixi Food Safety and Products (Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China

Tóm tắt

Abstract

As a newly developed technique, photoelectrochemical (PEC) immunoassays have attracted great attention in recent years because of their low cost and desirable sensitivity. Because the detection signal originates from the photoelectric conversion of photoelectric materials, the appearance and application of quantum dots (QDs), which possess unique photophysical properties and regulated optoelectronic characteristics, has taken the development of PEC immunoassays to new heights. This review concisely introduces the general mechanism of QDs‐based photoelectric conversion for immunoassays and summarizes the current advances in QD applications in immunoassays. Given that signal strategies and photoactive materials are the key elements in PEC biosensor systems, we comprehensively highlight the state‐of‐the‐art signaling strategies and various applications of QDs in PEC immunoassays to introduce advances in QDs‐based PEC immunoassays. Finally, challenges and future developmental trends are briefly discussed

Từ khóa


Tài liệu tham khảo

10.1039/C4CS00228H

 

10.1021/acs.analchem.6b04281

10.1002/chem.201203521

10.1021/acsami.5b08742

 

10.1038/382609a0

10.1063/1.445834

10.1063/1.445676

 

10.1002/anie.200800169

10.1002/ange.200800169

10.1002/adfm.201202697

10.1002/1521-3773(20010518)40:10<1861::AID-ANIE1861>3.0.CO;2-V

10.1002/1521-3757(20010518)113:10<1913::AID-ANGE1913>3.0.CO;2-P

 

10.1021/ja056494n

10.1021/nn204350w

10.1016/j.ijhydene.2017.02.166

 

Chen H., 2017, IEEE J. Sel. Top. Quantum Electron., 23, 1

10.1021/j100403a003

10.1016/j.rser.2016.09.134

 

10.1016/j.bios.2012.09.025

10.1039/C6NR05011E

10.1016/j.trac.2014.12.007

10.1016/j.trac.2016.03.005

 

10.1002/adfm.201103074

10.1002/adom.201500066

 

10.1021/ja070099a

10.1021/ja0782706

10.1002/elan.201600166

 

10.1016/j.bios.2016.11.009

10.1039/C7NR00091J

10.1021/acsnano.5b05690

10.1016/j.bios.2017.03.011

10.1039/C4TB01570C

10.1021/acs.analchem.5b04579

 

10.1021/acs.analchem.6b00262

10.1021/acs.analchem.5b01360

10.1021/acs.analchem.5b02676

 

10.1016/j.bios.2017.05.027

10.1016/j.bios.2017.06.033

10.1039/C4RA15918G

10.1016/j.bios.2014.02.071

10.1016/j.bios.2017.04.005

 

10.1016/j.bios.2014.03.011

10.1021/ac302853y

10.1021/ac4028005

10.1039/c3an01410j

10.1021/acs.analchem.6b00144

10.1016/j.bios.2015.06.037

10.1021/acs.analchem.6b02740

10.1021/am5043164

10.1016/j.bios.2015.04.086

10.1016/j.bios.2015.09.043

10.1016/j.talanta.2014.11.041

10.1021/acs.analchem.6b02124

10.1021/acs.analchem.7b00942

 

10.1039/c1cc13952e

10.1016/j.bios.2016.06.018

 

10.1021/ac300127s

10.1021/acs.analchem.6b00503

10.1016/j.bios.2016.12.045

10.1016/j.bios.2016.12.043

 

10.1002/cssc.201402325

10.1021/acs.analchem.6b01600

10.1016/j.bios.2016.04.049

10.1039/c2cc32866f

 

10.1021/ac4001496

10.1016/j.snb.2016.04.166

10.1039/c3cc00149k

10.1021/acs.analchem.6b04461

10.1002/smll.201302383