Curious Feature Selection

Information Sciences - Tập 485 - Trang 42-54 - 2019
Michal Moran1, Goren Gordon1
1Curiosity Lab, Department of Industrial Engineering, Tel Aviv University, Israel

Tài liệu tham khảo

A. Barto, S. Singh, N. Chentanez, Intrinsically motivated learning of hierarchical collections of skills, 2004. http://www-anw.cs.umass.edu/pubs/2004/barto_sc_ICDL04.pdf. Battiti, 1994, Using mutual information for selecting features in supervised neural net learning, IEEE Trans. Neural Netw., 5, 537, 10.1109/72.298224 Blum, 1997, Selection of relevant features and examples in machine learning, Artif. Intell., 97, 245, 10.1016/S0004-3702(97)00063-5 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Busoniu, 2010 Chandrashekar, 2014, A survey on feature selection methods, Comput. Electr. Eng., 40, 16, 10.1016/j.compeleceng.2013.11.024 Che, 2017, Maximum relevance minimum common redundancy feature selection for nonlinear data, Inf. Sci., 409, 68, 10.1016/j.ins.2017.05.013 Darken, 1992, Learning rate schedules for faster stochastic gradient search, 3 O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, Optimal distributed online prediction using mini-batches, (2010), [cs, math] http://arxiv.org/abs/1012.1367. Dhar, 2013, Data science and prediction, Commun. ACM, 56, 64, 10.1145/2500499 Even-Dar, 2002, Convergence of optimistic and incremental Q-learning, 1499 Friedman, 2001, Greedy function approximation: a gradient boosting machine, Ann. Stat., 1189, 10.1214/aos/1013203451 Goldberg, 1989 Gordon, 2012, Hierarchical curiosity loops and active sensing, Neural Netw., 32, 119, 10.1016/j.neunet.2012.02.024 Gordon, 2014, Emergent exploration via novelty management, J. Neurosci., 34, 12646, 10.1523/JNEUROSCI.1872-14.2014 Gordon, 2014, Learning and control of exploration primitives, J. Comput. Neurosci., 37, 259, 10.1007/s10827-014-0500-1 Gui, 2017, Feature selection based on structured sparsity: a comprehensive study, IEEE Trans. Neural Netw. Learn. Syst., 28, 1490, 10.1109/TNNLS.2016.2551724 Guyon, 2003, An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157 J. Hoppen, Medical appointment no shows, 2017, https://www.kaggle.com/joniarroba/noshowappointments. Imam, 1993, Discovering attribute dependence in databases by integrating symbolic learning and statistical analysis techniques Jain, 1997, Feature selection: evaluation, application, and small sample performance, IEEE Trans. Pattern Anal. Mach. Intell., 19, 153, 10.1109/34.574797 Jain, 1999, Data clustering: a review, ACM Comput. Surv. (CSUR), 31, 264, 10.1145/331499.331504 Kaelbling, 1996, Reinforcement learning: a survey, J. Artif. Int. Res., 4, 237 Keogh, 2011, Curse of dimensionality, 257 Kittler, 1978, Feature set search algorithms, Pattern Recognit. Signal Process., 10.1007/978-94-009-9941-1_3 Kohavi, 1997, Wrappers for feature subset selection, Artif. Intell., 97, 273, 10.1016/S0004-3702(97)00043-X Lal, 2006, Embedded methods, 137 Li, 2017, Challenges of feature selection for big data analytics, IEEE Intell. Syst., 32, 9, 10.1109/MIS.2017.38 Liaw, 2002, Classification and regression by randomForest, R News, 2, 18 Lichman, 2013 Lin, 2014, Scaling up reinforcement learning, 182 Lin, 2016, Multi-label feature selection with streaming labels, Inf. Sci., 372, 256, 10.1016/j.ins.2016.08.039 Narendra, 1977, A branch and bound algorithm for feature subset selection, IEEE Trans. Comput., C-26, 917, 10.1109/TC.1977.1674939 Otterlo, 2012, Reinforcement learning and Markov decision processes, 3 Oudeyer, 2007, Intrinsic motivation systems for autonomous mental development, IEEE Trans. Evol. Comput., 11, 265, 10.1109/TEVC.2006.890271 Pudil, 1994, Floating search methods in feature selection, Pattern Recognit. Lett., 15, 1119, 10.1016/0167-8655(94)90127-9 Puterman, 2014 Pyle, 1999, 1 Rahm, 2000, Data cleaning: problems and current approaches, IEEE Data Eng. Bull., 23, 3 Rand, 1971, Objective criteria for the evaluation of clustering methods, J. Am. Stat. Assoc., 66, 846, 10.1080/01621459.1971.10482356 Schmidhuber, 2010, Formal theory of creativity, fun, and intrinsic motivation (1990 #x2013;2010), IEEE Trans. Auton. Mental Dev., 2, 230, 10.1109/TAMD.2010.2056368 B. Strack, J.P. DeShazo, C. Gennings, J.L. Olmo, S. Ventura, K.J. Cios, J.N. Clore, Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records, 2014. https://www.hindawi.com/journals/bmri/2014/781670/. Sutton, 1998, 1 Wang, 2016, Towards felicitous decision making: an overview on challenges and trends of big data, Inf. Sci., 367, 747, 10.1016/j.ins.2016.07.007 Watkins, 1989 Watkins, 1992, Q-learning, Mach. Learn., 8, 279, 10.1007/BF00992698 Wu, 2014, Data mining with big data, IEEE Trans. Knowl. Data Eng., 26, 97, 10.1109/TKDE.2013.109 Wu, 2017, Large-scale online feature selection for ultra-high dimensional sparse data, ACM Trans. Knowl. Discov. Data, 11, 48:1, 10.1145/3070646