Curious Feature Selection
Tài liệu tham khảo
A. Barto, S. Singh, N. Chentanez, Intrinsically motivated learning of hierarchical collections of skills, 2004. http://www-anw.cs.umass.edu/pubs/2004/barto_sc_ICDL04.pdf.
Battiti, 1994, Using mutual information for selecting features in supervised neural net learning, IEEE Trans. Neural Netw., 5, 537, 10.1109/72.298224
Blum, 1997, Selection of relevant features and examples in machine learning, Artif. Intell., 97, 245, 10.1016/S0004-3702(97)00063-5
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Busoniu, 2010
Chandrashekar, 2014, A survey on feature selection methods, Comput. Electr. Eng., 40, 16, 10.1016/j.compeleceng.2013.11.024
Che, 2017, Maximum relevance minimum common redundancy feature selection for nonlinear data, Inf. Sci., 409, 68, 10.1016/j.ins.2017.05.013
Darken, 1992, Learning rate schedules for faster stochastic gradient search, 3
O. Dekel, R. Gilad-Bachrach, O. Shamir, L. Xiao, Optimal distributed online prediction using mini-batches, (2010), [cs, math] http://arxiv.org/abs/1012.1367.
Dhar, 2013, Data science and prediction, Commun. ACM, 56, 64, 10.1145/2500499
Even-Dar, 2002, Convergence of optimistic and incremental Q-learning, 1499
Friedman, 2001, Greedy function approximation: a gradient boosting machine, Ann. Stat., 1189, 10.1214/aos/1013203451
Goldberg, 1989
Gordon, 2012, Hierarchical curiosity loops and active sensing, Neural Netw., 32, 119, 10.1016/j.neunet.2012.02.024
Gordon, 2014, Emergent exploration via novelty management, J. Neurosci., 34, 12646, 10.1523/JNEUROSCI.1872-14.2014
Gordon, 2014, Learning and control of exploration primitives, J. Comput. Neurosci., 37, 259, 10.1007/s10827-014-0500-1
Gui, 2017, Feature selection based on structured sparsity: a comprehensive study, IEEE Trans. Neural Netw. Learn. Syst., 28, 1490, 10.1109/TNNLS.2016.2551724
Guyon, 2003, An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157
J. Hoppen, Medical appointment no shows, 2017, https://www.kaggle.com/joniarroba/noshowappointments.
Imam, 1993, Discovering attribute dependence in databases by integrating symbolic learning and statistical analysis techniques
Jain, 1997, Feature selection: evaluation, application, and small sample performance, IEEE Trans. Pattern Anal. Mach. Intell., 19, 153, 10.1109/34.574797
Jain, 1999, Data clustering: a review, ACM Comput. Surv. (CSUR), 31, 264, 10.1145/331499.331504
Kaelbling, 1996, Reinforcement learning: a survey, J. Artif. Int. Res., 4, 237
Keogh, 2011, Curse of dimensionality, 257
Kittler, 1978, Feature set search algorithms, Pattern Recognit. Signal Process., 10.1007/978-94-009-9941-1_3
Kohavi, 1997, Wrappers for feature subset selection, Artif. Intell., 97, 273, 10.1016/S0004-3702(97)00043-X
Lal, 2006, Embedded methods, 137
Li, 2017, Challenges of feature selection for big data analytics, IEEE Intell. Syst., 32, 9, 10.1109/MIS.2017.38
Liaw, 2002, Classification and regression by randomForest, R News, 2, 18
Lichman, 2013
Lin, 2014, Scaling up reinforcement learning, 182
Lin, 2016, Multi-label feature selection with streaming labels, Inf. Sci., 372, 256, 10.1016/j.ins.2016.08.039
Narendra, 1977, A branch and bound algorithm for feature subset selection, IEEE Trans. Comput., C-26, 917, 10.1109/TC.1977.1674939
Otterlo, 2012, Reinforcement learning and Markov decision processes, 3
Oudeyer, 2007, Intrinsic motivation systems for autonomous mental development, IEEE Trans. Evol. Comput., 11, 265, 10.1109/TEVC.2006.890271
Pudil, 1994, Floating search methods in feature selection, Pattern Recognit. Lett., 15, 1119, 10.1016/0167-8655(94)90127-9
Puterman, 2014
Pyle, 1999, 1
Rahm, 2000, Data cleaning: problems and current approaches, IEEE Data Eng. Bull., 23, 3
Rand, 1971, Objective criteria for the evaluation of clustering methods, J. Am. Stat. Assoc., 66, 846, 10.1080/01621459.1971.10482356
Schmidhuber, 2010, Formal theory of creativity, fun, and intrinsic motivation (1990 #x2013;2010), IEEE Trans. Auton. Mental Dev., 2, 230, 10.1109/TAMD.2010.2056368
B. Strack, J.P. DeShazo, C. Gennings, J.L. Olmo, S. Ventura, K.J. Cios, J.N. Clore, Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records, 2014. https://www.hindawi.com/journals/bmri/2014/781670/.
Sutton, 1998, 1
Wang, 2016, Towards felicitous decision making: an overview on challenges and trends of big data, Inf. Sci., 367, 747, 10.1016/j.ins.2016.07.007
Watkins, 1989
Watkins, 1992, Q-learning, Mach. Learn., 8, 279, 10.1007/BF00992698
Wu, 2014, Data mining with big data, IEEE Trans. Knowl. Data Eng., 26, 97, 10.1109/TKDE.2013.109
Wu, 2017, Large-scale online feature selection for ultra-high dimensional sparse data, ACM Trans. Knowl. Discov. Data, 11, 48:1, 10.1145/3070646