Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bansal, 2018, Lie symmetry analysis for cubic-quartic nonlinear Schrödinger’s equation, Optik, 169, 12, 10.1016/j.ijleo.2018.05.030
Biswas, 2017, Cubic–quartic optical solitons in Kerr and power–law media, Optik, 144, 357, 10.1016/j.ijleo.2017.07.008
Biswas, 2017, Conservation laws for cubic–quartic optical solitons in Kerr and power–law media, Optik, 145, 650, 10.1016/j.ijleo.2017.08.047
Biswas, 2018, Application of semi inverse variational principle to cubic–quartic optical solitons having Kerr and power law nonlinearity, Optik, 172, 847, 10.1016/j.ijleo.2018.07.105
Das, 2019, Suppressing internet bottleneck with fractional temporal evolution of cubic quartic optical solitons, Optik, 182, 303, 10.1016/j.ijleo.2018.12.184
Gonzalez-Gaxiola, 2020, Cubic-quartic bright optical solitons with improved Adomian decomposition method, J Adv Res, 21, 161, 10.1016/j.jare.2019.10.004
Kohl, 2019, Cubic–quartic optical soliton perturbation by semi–inverse variational principle, Optik, 185, 45, 10.1016/j.ijleo.2019.03.073
Kudryashov, 2019, A generalized model for description of propagation pulses in optical fiber, Optik, 189, 42, 10.1016/j.ijleo.2019.05.069
Kyudryashov, 2019, First integrals and general solution of the traveling wave reduction for Schrödinger equation with anti–cubic nonlinearity, Optik, 185, 665, 10.1016/j.ijleo.2019.03.167
Kudryashov, 2019, Traveling wave solutions of the generalized nonlinear Schrödinger equation with cubic–quintic nonlinearity, Optik, 188, 27, 10.1016/j.ijleo.2019.05.026
Kudryashov, 2019, The Painlevà approach for finding solitary wave solutions of nonlinear nonintegrable differential equations, Optik, 183, 642, 10.1016/j.ijleo.2019.02.087
Kudryashov, 2019, Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber, Optik, 194, 10.1016/j.ijleo.2019.163060
Kudryashov, 2019, Construction of nonlinear differential equations for description of propagation pulses in optical fiber, Optik, 192, 10.1016/j.ijleo.2019.162964
Wazwaz, 2019, A variety of optical solitons for nonlinear Schrödinger equation with detuning term by the variational iteration method, Optik, 196, 10.1016/j.ijleo.2019.163169
Wazwaz, 2019, Bright and dark optical solitons for (2+1)–dimensional Schrödinger (NLS) equations in the anomalous dispersion regimes and the normal dispersive regimes, Optik, 192, 10.1016/j.ijleo.2019.162948
Xu, 2014, Extended auxiliary equation method and its applications to three generalized NLS equations, Abstract Appl Anal, 2014
Yildirim Y, Biswas A, Guggilla P, Mallawi F, Belic MR. Cubic–quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index. To appear in Optik.
Zayed, 2017, Solitons and other solutions for two nonlinear Schrodinger equations using the new mapping method, Optik, 144, 132, 10.1016/j.ijleo.2017.06.101
Triki, 2019, Propagation of chirped optical similaritons in inhomogeneous tapered centrosymmetric nonlinear waveguides doped with resonant impurities, Laser Phys, 29, 10.1088/1555-6611/ab2c69
Yan, 2019, Stable transmission of solitons in the complex cubic–quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects, Appl Math Lett, 98, 171, 10.1016/j.aml.2019.06.008
Liu, 2019, Analytic study on triple–S, triple–triangle structure interactions for solitons in inhomogeneous multi–mode fiber, Appl Math Comput, 361, 325, 10.1016/j.amc.2019.05.046
Guan, 2020, Some lump solutions for a generalized (3+1)–dimensional Kadomtsev-Petviashvili equation, Appl Math Comput, 366