Cu4O3-based all metal oxides for transparent photodetectors
Tài liệu tham khảo
Kim, 2012, Emitter controlled SiNx-free crystalline Si solar cells with a transparent conducting oxide film, Mater. Lett., 79, 284, 10.1016/j.matlet.2012.04.028
Kim, 2013, Optimization of transparent conductor-embedding front electrodes for efficient light management, Curr. Appl. Phys., 13, 808, 10.1016/j.cap.2012.11.023
David, 2015, Periodically patterned Si pyramids for realizing high efficient solar cells by wet etching process, Sol. Energy, 117, 2015
Kim, 2015, Three-dimensional nanodome-printed transparent conductors for high-performing Si photodetectors, Mater. Lett., 148, 174, 10.1016/j.matlet.2015.02.090
Kim, 2015, Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar, Sci. Rep., 5, 9256, 10.1038/srep09256
Ok, 2014, All oxide ultraviolet photodetectors based on a p-Cu2O film/n-ZnO heterostructure nanowires, Thin Solid Films, 570, 282, 10.1016/j.tsf.2014.05.026
Patel, 2015, All transparent metal oxide ultraviolet photodetector, Adv. Electron. Mater., 1, 1500232, 10.1002/aelm.201500232
Chatterjee, 2016, Solar Energy Materials & Solar Cells Formation of all-oxide solar cells in atmospheric condition based on Cu 2 O thin- fi lms grown through SILAR technique, Sol. Energy Mater. Sol. Cells, 147, 17, 10.1016/j.solmat.2015.11.045
Rühle, 2012, All-oxide photovoltaics, J. Phys. Chem. Lett., 3, 10.1021/jz3017039
Kang, 2015, Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application, Sci. Rep., 1
Ito, 1998, Single-crystal growth and characterization of Cu2O and CuO, J. Mater. Sci., 33, 3555, 10.1023/A:1004690809547
Tiwana, 2011, Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells, ACS Nano, 5, 5158, 10.1021/nn201243y
Siddiki, 2012, Nb2O5 as a new electron transport layer for double junction polymer solar cells, Phys. Chem. Chem. Phys., 14, 4682, 10.1039/c2cp22627h
Mashford, 2010, All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing, J. Mater. Chem., 20, 167, 10.1039/B905256A
Tseng, 2012, Ultrathin molybdenum oxide anode buffer layer for organic photovoltaic cells formed using atomic layer deposition, Sol. Energy Mater. Sol. Cells, 99, 235, 10.1016/j.solmat.2011.12.004
Lampande, 2013, A highly efficient transition metal oxide layer for hole extraction and transport in inverted polymer bulk heterojunction solar cells, J. Mater. Chem. A, 1, 6895, 10.1039/c3ta10863e
Meyer, 2012, Transition metal oxides for organic electronics: energetics, device physics and applications, Adv. Mater., 24, 5408, 10.1002/adma.201201630
Masudy-Panah, 2015, Titanium doped cupric oxide for photovoltaic application, Sol. Energy Mater. Sol. Cells, 140, 266, 10.1016/j.solmat.2015.04.024
Yoon, 2000, Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate, Thin Solid Films, 372, 250, 10.1016/S0040-6090(00)01058-0
Marabelli, 1995, Optical gap of CuO, Phys. Rev. B, 52, 1433, 10.1103/PhysRevB.52.1433
Ramı́rez-Ortiz, 2001, A catalytic application of Cu2O and CuO films deposited over fiberglass, Appl. Surf. Sci., 174, 177, 10.1016/S0169-4332(00)00822-9
Hu, 2008, On-site interband excitations in resonant inelastic x-ray scattering from Cu2O, Phys Rev. B, 77, 155115, 10.1103/PhysRevB.77.155115
Han, 2009, Electrochemically deposited p-n homojunction cuprous oxide solar cells, Sol. Energy Mater. Sol. Cells, 93, 153, 10.1016/j.solmat.2008.09.023
McShane, 2012, Junction studies on electrochemically fabricated p-n Cu2O homojunction solar cells for efficiency enhancement, Phys. Chem. Chem. Phys., 14, 6112, 10.1039/c2cp40502d
McShane, 2010, Effect of junction morphology on the performance of polycrystalline cu2o homojunction solar cells, J. Phys. Chem. Lett., 1, 2666, 10.1021/jz100991e
Wei, 2012, Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure, J. Phys. Chem. C, 116, 10510, 10.1021/jp301904s
Minami, 2013, High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as N-type Layer, Appl. Phys. Express, 6, 44101, 10.7567/APEX.6.044101
Minami, 2015, Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet, Appl. Phys. Express, 8, 22301, 10.7567/APEX.8.022301
Thobor, 2003, Properties and air annealing of paramelaconite thin films, Mater. Lett., 57, 3676, 10.1016/S0167-577X(03)00148-4
Morgan, 1996, Synthesis of paramelaconite: Cu4O3, J. Solid State Chem., 37, 33, 10.1006/jssc.1996.0005
Reppin, 2012, Optical and electrical properties of Cu2O, Cu4O3 and CuO, MRS Proceedings, 1494, 165, 10.1557/opl.2012.1581
Guo, 2012, A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection, Nat. Nanotechnol., 7, 798, 10.1038/nnano.2012.187
Kim, 2016, 76, 621