Cu4O3-based all metal oxides for transparent photodetectors

Sensors and Actuators A: Physical - Tập 253 - Trang 35-40 - 2017
Hong-Sik Kim1, Melvin David Kumar2, Wang-Hee Park1, Malkeshkumar Patel1, Joondong Kim1
1Photoelectric and Energy Device Application Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, Incheon 406772, Republic of Korea
2Department of Physics, Aditanar College of Arts and Science, Tamil Nadu, 628216, India

Tài liệu tham khảo

Kim, 2012, Emitter controlled SiNx-free crystalline Si solar cells with a transparent conducting oxide film, Mater. Lett., 79, 284, 10.1016/j.matlet.2012.04.028 Kim, 2013, Optimization of transparent conductor-embedding front electrodes for efficient light management, Curr. Appl. Phys., 13, 808, 10.1016/j.cap.2012.11.023 David, 2015, Periodically patterned Si pyramids for realizing high efficient solar cells by wet etching process, Sol. Energy, 117, 2015 Kim, 2015, Three-dimensional nanodome-printed transparent conductors for high-performing Si photodetectors, Mater. Lett., 148, 174, 10.1016/j.matlet.2015.02.090 Kim, 2015, Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar, Sci. Rep., 5, 9256, 10.1038/srep09256 Ok, 2014, All oxide ultraviolet photodetectors based on a p-Cu2O film/n-ZnO heterostructure nanowires, Thin Solid Films, 570, 282, 10.1016/j.tsf.2014.05.026 Patel, 2015, All transparent metal oxide ultraviolet photodetector, Adv. Electron. Mater., 1, 1500232, 10.1002/aelm.201500232 Chatterjee, 2016, Solar Energy Materials & Solar Cells Formation of all-oxide solar cells in atmospheric condition based on Cu 2 O thin- fi lms grown through SILAR technique, Sol. Energy Mater. Sol. Cells, 147, 17, 10.1016/j.solmat.2015.11.045 Rühle, 2012, All-oxide photovoltaics, J. Phys. Chem. Lett., 3, 10.1021/jz3017039 Kang, 2015, Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application, Sci. Rep., 1 Ito, 1998, Single-crystal growth and characterization of Cu2O and CuO, J. Mater. Sci., 33, 3555, 10.1023/A:1004690809547 Tiwana, 2011, Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells, ACS Nano, 5, 5158, 10.1021/nn201243y Siddiki, 2012, Nb2O5 as a new electron transport layer for double junction polymer solar cells, Phys. Chem. Chem. Phys., 14, 4682, 10.1039/c2cp22627h Mashford, 2010, All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing, J. Mater. Chem., 20, 167, 10.1039/B905256A Tseng, 2012, Ultrathin molybdenum oxide anode buffer layer for organic photovoltaic cells formed using atomic layer deposition, Sol. Energy Mater. Sol. Cells, 99, 235, 10.1016/j.solmat.2011.12.004 Lampande, 2013, A highly efficient transition metal oxide layer for hole extraction and transport in inverted polymer bulk heterojunction solar cells, J. Mater. Chem. A, 1, 6895, 10.1039/c3ta10863e Meyer, 2012, Transition metal oxides for organic electronics: energetics, device physics and applications, Adv. Mater., 24, 5408, 10.1002/adma.201201630 Masudy-Panah, 2015, Titanium doped cupric oxide for photovoltaic application, Sol. Energy Mater. Sol. Cells, 140, 266, 10.1016/j.solmat.2015.04.024 Yoon, 2000, Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate, Thin Solid Films, 372, 250, 10.1016/S0040-6090(00)01058-0 Marabelli, 1995, Optical gap of CuO, Phys. Rev. B, 52, 1433, 10.1103/PhysRevB.52.1433 Ramı́rez-Ortiz, 2001, A catalytic application of Cu2O and CuO films deposited over fiberglass, Appl. Surf. Sci., 174, 177, 10.1016/S0169-4332(00)00822-9 Hu, 2008, On-site interband excitations in resonant inelastic x-ray scattering from Cu2O, Phys Rev. B, 77, 155115, 10.1103/PhysRevB.77.155115 Han, 2009, Electrochemically deposited p-n homojunction cuprous oxide solar cells, Sol. Energy Mater. Sol. Cells, 93, 153, 10.1016/j.solmat.2008.09.023 McShane, 2012, Junction studies on electrochemically fabricated p-n Cu2O homojunction solar cells for efficiency enhancement, Phys. Chem. Chem. Phys., 14, 6112, 10.1039/c2cp40502d McShane, 2010, Effect of junction morphology on the performance of polycrystalline cu2o homojunction solar cells, J. Phys. Chem. Lett., 1, 2666, 10.1021/jz100991e Wei, 2012, Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure, J. Phys. Chem. C, 116, 10510, 10.1021/jp301904s Minami, 2013, High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as N-type Layer, Appl. Phys. Express, 6, 44101, 10.7567/APEX.6.044101 Minami, 2015, Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet, Appl. Phys. Express, 8, 22301, 10.7567/APEX.8.022301 Thobor, 2003, Properties and air annealing of paramelaconite thin films, Mater. Lett., 57, 3676, 10.1016/S0167-577X(03)00148-4 Morgan, 1996, Synthesis of paramelaconite: Cu4O3, J. Solid State Chem., 37, 33, 10.1006/jssc.1996.0005 Reppin, 2012, Optical and electrical properties of Cu2O, Cu4O3 and CuO, MRS Proceedings, 1494, 165, 10.1557/opl.2012.1581 Guo, 2012, A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection, Nat. Nanotechnol., 7, 798, 10.1038/nnano.2012.187 Kim, 2016, 76, 621