Cu2ZnSn(SxSe1−x)4 thin film solar cell with high sulfur content (x approximately 0.4) and low Voc deficit prepared using a postsulfurization process
Tài liệu tham khảo
Riha, 2011, Compositionally tunable Cu2ZnSn(S1–xSex)4 nanocrystals: probing the effect of Se-inclusion in mixed chalcogenide thin films, J. Am. Chem. Soc., 133, 15272, 10.1021/ja2058692
Wang, 2014, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency, Adv. Energy Mater., 4, 1301465, 10.1002/aenm.201301465
Haass, 2015, 11.2% efficient solution processed kesterite solar cell with a low voltage deficit, Adv. Energy Mater., 5, 1500712, 10.1002/aenm.201500712
Wu, 2016, High-efficiency Cu2ZnSn(S,Se) 4 solar cells fabricated through a low-cost solution process and a two-step heat treatment, Prog. Photovolt. Res. Appl., 10, 1002
Jackson, 2015, Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%, Phys. Status Solidi RRL, 9, 28, 10.1002/pssr.201409520
Guo, 2009, Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells, J. Am. Chem. Soc., 131, 11672, 10.1021/ja904981r
Fan, 2013, Composition-and band-gap-tunable synthesis of wurtzite-derived Cu2ZnSn (S1–xSex)4 nanocrystals: theoretical and experimental insights, ACS Nano, 2, 1454, 10.1021/nn3052296
Duan, 2013, The role of sulfur in solution-processed Cu2ZnSn(S,Se)4 and its effect on defect properties, Adv. Funct. Mater., 23, 1466, 10.1002/adfm.201201732
Singh, 2015, Controlled substitution of S by Se in reactively sputtered CZTSSe thin films for solar cells, J. Alloy. Compd., 648, 595, 10.1016/j.jallcom.2015.06.276
Chen, 2015, Effect of post sulfurization temperature on the microstructure of Cu2ZnSn (S, Se) 4 thin film, Mater. Lett., 159, 32, 10.1016/j.matlet.2015.06.067
Lee, 2013, Characteristics of Cu 2 ZnSnSe 4 and Cu 2 ZnSn (Se, Se) 4 absorber thin films prepared by post selenization and sequential sulfurization of co-evaporated Cu–Zn–Sn precursors, J. Alloy. Compd., 579, 279, 10.1016/j.jallcom.2013.06.064
Ou, 2012, Hot-injection synthesis of monodispersed Cu2ZnSn (SxSe1−x)4 nanocrystals: tunable composition and optical properties, J. Mater. Chem., 22, 14667, 10.1039/c2jm31901b
Siebentritt, 2013, Why are kesterite solar cells not 20% efficient, Thin Solid Films, 535, 1, 10.1016/j.tsf.2012.12.089
Gunawan, 2012, Electronic properties of the Cu2ZnSn (Se, Se) 4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods, Appl. Phys. Lett., 100, 253905, 10.1063/1.4729751
Haight, 2011, Band alignment at the Cu2ZnSn(SxSe1-x)4/CdS interface, Appl. Phys. Lett., 98, 253502, 10.1063/1.3600776
Gokmen, 2013, Band tailing and efficiency limitation in kesterite solar cells, Appl. Phys. Lett., 103, 103506, 10.1063/1.4820250
Yang, 2015, Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders, ACS Appl. Mater. Interfaces, 7, 460, 10.1021/am5064926
Oueslati, 2015, Physical and electrical characterization of high-performance Cu 2 ZnSnSe 4 based thin film solar cells, Thin Solid Films, 582, 224, 10.1016/j.tsf.2014.10.052
Lee, 2015, Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length, Adv. Energy Mater., 5, 1401372, 10.1002/aenm.201401372
Ananthoju, 2016, Cation/Anion substitution in Cu2ZnSnS4 for improved photovoltaic performance, Sci. Rep., 6, 35369, 10.1038/srep35369
Jiang, 2014, Adv. Energy Mater., 4, 1301381, 10.1002/aenm.201301381
Zhong, 2014, Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4 solar cells, Sci. Rep., 4, 6288, 10.1038/srep06288
Salome, 2012, Growth and characterization of Cu2ZnSn (S, Se)4 thin films for solar cells, Sol. Energy Mater. Sol. Cells, 101, 147, 10.1016/j.solmat.2012.02.031
Ji, 2013, A. route to phase controllable Cu2ZnSn(S1−xSex)4 nanocrystals with tunable energy bands, Sci. Rep., 3, 2733, 10.1038/srep02733
T. Kobayashi, H. Sugimoto, T. Kato, H. Hakuma, T. Nakada, 23rd International Photovaltaic Science and Engineering Conference.
Nakada, 1997, Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization, Sol. Energy Mater. Sol. Cells, 49, 285, 10.1016/S0927-0248(97)00054-8
Chen, 2016, Structural and photoelectron spectroscopic studies of band alignment at the Cu2ZnSnS4/CdS heterojunction with slight Ni doping in Cu2ZnSnS4, J. Phys. D: Appl. Phys., 49, 335102, 10.1088/0022-3727/49/33/335102
Sinton, 1996, Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data, Appl. Phys. Lett., 69, 2510, 10.1063/1.117723
Walter, 1996, Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions, J. Appl. Phys., 80, 4411, 10.1063/1.363401
Das, 2014, Defect levels in Cu2ZnSn(SxSe1−x)4 solar cells probed by current-mode deep level transient spectroscopy, Appl. Phys. Lett., 104, 192106, 10.1063/1.4876925
Nagaoka, 2013, Correlation between intrinsic defects and electrical properties in the high-quality Cu2ZnSnS4 single crystal, Appl. Phys. Lett., 103, 112107, 10.1063/1.4821279
Levcenko, 2012, Free-to-bound recombination in near stoichiometric Cu2ZnSnS4 single crystals, Phys. Rev. B, 86, 045206, 10.1103/PhysRevB.86.045206
Chen, 2011, Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells, Phys. Rev. B, 83, 125201, 10.1103/PhysRevB.83.125201
Nadenau, 2000, Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis, J. Appl. Phys., 87, 584, 10.1063/1.371903