CsPbI3 Perovskite Nanoparticles: Room-Temperature Synthesis and Optical Study

Russian Journal of Inorganic Chemistry - Tập 64 - Trang 1587-1591 - 2020
A. G. Son1, E. V. Krivogina2, N. V. Romanov1, M. Yu. Presnyakov3, S. S. Shapovalov4, S. A. Kozyukhin2,4
1Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
2Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
3Kurchatov Institute, National Research Center, Moscow, Russia
4Tomsk State University, Tomsk, Russia

Tóm tắt

A facile synthesis of CsPbI3 perovskite nanoparticles (NPs) at room temperature is described. The results of characterization of the nanoparticles synthesized using a high-resolution transmission electron microscope and their optical characteristics are presented.

Tài liệu tham khảo

Z. K. Tan, R. S. Moghaddam, M. L. Lai, et al., Nat. Nanotechnol. 9, 687 (2014). https://doi.org/10.1038/nnano.2014.149 B. R. Sutherland, S. Hoogland, M. M. Adachi, et al., ACS Nano 8, 10947 (2014). https://doi.org/10.1021/nn504856g G. C. Xing, N. Mathews, S. Y. Sun, et al., Science 342, 344 (2013). https://doi.org/10.1126/science.1243167 S. D. Stransks, G. E. Eperon, G. Granchini, et al., Science 108, 341 (2016). https://doi.org/10.1063/1.4941242 T. Zhao, W. Shi, J. Xi, et al., Sci. Repts 5 (2016). https://doi.org/10.1038/ncomms14398 L. Protesescu, S. Yakuni, M. I. Bodnarchuk, et al., Nano Lett. 15, 3692 (2015). https://doi.org/10.1021/nl5048779 Q. A. Akkerman, G. Rainò, M. V. Kovalenko, et al., Nat. Mater. 17, 394 (2018). https://doi.org/10.1038/s41563-018-0018-4 V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, et al., Science 290, 341 (2000). https://doi.org/10.1126/science.290.5490.314 Y. Zhou, M. Z. Elsayed, A. Q. Bruno, et al., Appl. Catal. B 248, 157 (2019). https://doi.org/10.1016/j.apcatb.2019.02.019 Q. A. Akkerman, S. G. Motti, A. R. S. Kandada, et al., J. Am. Chem. Soc. 138, 101 (2016). https://doi.org/10.1021/jacs.5b12124 J. S. Manser, M. I. Saidamino, J. A. Christians, et al., Acc. Chem. Res. 49, 330 (2016). https://doi.org/10.1021/acs.accounts.5b00455 T. A. Berhe, W. N. Su, C. H. Chen, et al., En. Env. Sci, No. 9, 323 (2016). https://doi.org/10.1039/C5EE02641E C. F. J. Lau, M. Zhang, X. Deng, et al., En. Lett. 2, 2319 (2017). https://doi.org/10.1021/acsenergylett.7b00751Isoz C. K. Møller, Nature 182, 1436 (1958). https://doi.org/10.1038/1821436a0 Y. Isoz and T. Isobe, ECS J. Solid State Sci. Technol. 7, 3040 (2018). https://doi.org/10.1149/2.0101801jss J. Yang, Chem. Mater. 27 (12), 4229 (2015). https://doi.org/10.1021/acs.chemmater.5b01598 Z. Wu, J. Wei, Y. Sun, et al., J. Mater. Sci. 54, 6917 (2019). https://doi.org/10.1007/s10853-019-03382-2 S. Tong, C. Gong, C. Zhang, et al., Appl. Mater. Today 15, 389 (2019). https://doi.org/10.1016/j.apmt.2019.03.001 J. Tong, J. Wu, W. Shen, et al., ACS Appl. Mater. Interfaces 11, 9317 (2019). https://doi.org/10.1021/acsami.8b20681 X. Li, Y. Wu, S. Zhang, et al., Adv. Funct. Mater. 26, 2435 (2016). https://doi.org/10.1002/adfm.201600109 Y. Tong, E. Bladt, M. F. Ayguler, et al., Angew. Chem., Int. Ed. Engl. 55, 1 (2016). https://doi.org/10.1002/anie.201605909 D. Zhang, Y. Yu, Y. Bekenstein, et al., J. Am. Chem. Soc. 138, 13155 (2016). https://doi.org/10.1021/jacs.6b08373 L. Brus, J. Phys. Chem. 90, 2550 (1986). https://doi.org/10.1021/j100403a003 J. Shamsi, A. S. Urban, M. Imran, et al., Chem. Rev. 119, 3296 (2019). https://doi.org/10.1021/acs.chemrev.8b00644 R. E. Beal, D. J. Slotcavage, T. Leijtens, et al., J. Phys. Chem. Lett. 7, 746 (2016). https://doi.org/10.1021/acs.jpclett.6b00002