Cs3Bi2I9/g-C3N4 as a new binary photocatalyst for efficient visible-light photocatalytic processes
Tài liệu tham khảo
Hoffmann, 1995, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004
Patrocinio, 2015, Charge carrier dynamics and photocatalytic behavior of TiO<inf>2</inf> nanopowders submitted to hydrothermal or conventional heat treatment, RSC Adv., 5, 70536, 10.1039/C5RA13291F
Spasiano, 2015, Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach, Appl. Catal. B Environ., 170–171, 90, 10.1016/j.apcatb.2014.12.050
Natarajan, 2014, Enhanced direct sunlight photocatalytic oxidation of methanol using nanocrystalline TiO2 calcined at different temperature, J. Nanoparticle Res., 16, 2713, 10.1007/s11051-014-2713-7
Kou, 2017, Selectivity Enhancement in Heterogeneous Photocatalytic Transformations, Chem. Rev., 117, 1445, 10.1021/acs.chemrev.6b00396
Yoon, 2010, Visible light photocatalysis as a greener approach to photochemical synthesis, Nat. Chem., 2, 527, 10.1038/nchem.687
Konstantinou, 2004, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review, Appl. Catal. B Environ., 49, 1, 10.1016/j.apcatb.2003.11.010
Kessler, 2017, Functional carbon nitride materials-design strategies for electrochemical devices, Nat. Rev. Mater., 2, 10.1038/natrevmats.2017.30
Liu, 2013, Application potential of carbon nanotubes in water treatment: A review, J. Environ. Sci. (China), 25, 1263, 10.1016/S1001-0742(12)60161-2
Chen, 2017, Particulate photocatalysts for overall water splitting, Nat. Rev. Mater., 2, 1, 10.1038/natrevmats.2017.50
Ran, 2018, Metal-Free 2D/2D Phosphorene/g-C 3 N 4 Van der Waals Heterojunction for Highly Enhanced Visible-Light Photocatalytic H 2 Production, Adv. Mater., 30, 2, 10.1002/adma.201800128
Joy, 2018, Nanomaterials for photoelectrochemical water splitting – review, Int. J. Hydrogen Energy., 43, 4804, 10.1016/j.ijhydene.2018.01.099
Zhang, 2016, Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation, Appl. Catal. B Environ., 180, 656, 10.1016/j.apcatb.2015.06.056
Qiu, 2014, Cobalt modified mesoporous graphitic carbon nitride with enhanced visible-light photocatalytic activity, RSC Adv., 4, 39969, 10.1039/C4RA06451H
Lam, 2016, A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater, Mater. Sci. Semicond. Process., 47, 62, 10.1016/j.mssp.2016.02.019
Kumar, 2018, g-C3N4-Based Nanomaterials for Visible Light-Driven Photocatalysis, Catalysts., 8, 74, 10.3390/catal8020074
Park, 2016, Organic-inorganic halide perovskite photovoltaics: From fundamentals to device architectures, Org. Halide Perovskite Photovoltaics From Fundam. to Device Archit., 3, 1
Lee, 2014, Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor, J. Am. Chem. Soc., 136, 15379, 10.1021/ja508464w
Kojima, 2009, Organometal Halide Perovskites as Visible- Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r
Pérez-Osorio, 2015, Vibrational Properties of the Organic-Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra, J. Phys. Chem. C., 119, 25703, 10.1021/acs.jpcc.5b07432
Dualeh, 2014, Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells, ACS Nano., 8, 362, 10.1021/nn404323g
Zai, 2018, Congeneric Incorporation of CsPbBr 3 Nanocrystals in a Hybrid Perovskite Heterojunction for Photovoltaic Efficiency Enhancement, ACS Energy Lett., 3, 30, 10.1021/acsenergylett.7b00925
Xu, 2017, A CsPbBr 3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction, J. Am. Chem. Soc., 139, 5660, 10.1021/jacs.7b00489
Noel, 2014, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications, Energy Environ. Sci., 7, 3061, 10.1039/C4EE01076K
Park, 2015, Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application, Adv. Mater., 27, 6806, 10.1002/adma.201501978
Cuhadar, 2018, All-Inorganic Bismuth Halide Perovskite-Like Materials A 3 Bi 2 I 9 and A 3 Bi 1.8 Na 0.2 I 8.6 (A = Rb and Cs) for Low-Voltage Switching Resistive Memory, ACS Appl. Mater. Interfaces, 10, 29741, 10.1021/acsami.8b07103
Ou, 2018, Amino-Assisted Anchoring of CsPbBr 3 Perovskite Quantum Dots on Porous g-C3N4 for Enhanced Photocatalytic CO2 Reduction, Angew. Chemie - Int. Ed., 57, 13570, 10.1002/anie.201808930
Shi, 2015, Electrostatic Self-Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal-Organic Framework for Enhanced Photocatalytic CO<inf>2</inf> Reduction, Adv. Funct. Mater., 25, 5360, 10.1002/adfm.201502253
Tu, 2017, Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H2 Evolution and CO2 Reduction, ACS Sustain. Chem. Eng., 5, 7260, 10.1021/acssuschemeng.7b01477
Li, 2017, Amino-Mediated Anchoring Perovskite Quantum Dots for Stable and Low-Threshold Random Lasing, Adv. Mater., 29, 1, 10.1002/adma.201701185
De Roo, 2016, Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals, ACS Nano., 10, 2071, 10.1021/acsnano.5b06295
Sharma, 2019, Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review, J. Ind. Eng. Chem., 78, 1, 10.1016/j.jiec.2019.06.022
Zhang, 2014, Enhancement of visible light photocatalytic activities via porous structure of g-C3N4, Appl. Catal. B Environ., 147, 229, 10.1016/j.apcatb.2013.09.002
Yan, 2009, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir., 25, 10397, 10.1021/la900923z
Tian, 2014, Novel g-C3N4/BiIO4heterojunction photocatalysts: Synthesis, characterization and enhanced visible-light-responsive photocatalytic activity, RSC Adv., 4, 42716, 10.1039/C4RA05917D
Pal, 2018, Synthesis and Optical Properties of Colloidal M3Bi2I9 (M=Cs, Rb) Perovskite Nanocrystals, J. Phys. Chem. C., 122, 10.1021/acs.jpcc.8b03542
Bailar, 1974, INFRARED SPECTRA OF, 36
Cai, 2013, Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy, J. Polym. Environ., 21, 108, 10.1007/s10924-012-0534-2
S. Krzemińska, L. Lipińska, M. Woluntarski, M. Oleksy, C. Ślusarczyk, W. Biniaś, A. Smejda-Krzewicka, Hybrid XNBR composites with carbon and aluminosilicate nanofillers, (2019). http://doi.org/10.1007/s00289-019-02825-9.
Joon, 2014, Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor, Electrochim. Acta., 116, 118, 10.1016/j.electacta.2013.11.040
Shandilya, 2018, Fabrication of fluorine doped graphene and SmVO4 based dispersed and adsorptive photocatalyst for abatement of phenolic compounds from water and bacterial disinfection, J. Clean. Prod., 203, 386, 10.1016/j.jclepro.2018.08.271
Yang, 2014, Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity, J. Hazard. Mater., 271, 150, 10.1016/j.jhazmat.2014.02.023
Lehner, 2015, Crystal and Electronic Structures of Complex Bismuth Iodides A3Bi2I9(A = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics, Chem. Mater., 27, 7137, 10.1021/acs.chemmater.5b03147
Aguirre, 2017, Matias; Zhou, Ruixin; Eugene, Alexis; Guzman, Marcelo; Grela, Cu2O/TiO2 heterostructure for CO2 reduction through a drect Z-scheme: Protecting Cu2O from photocorrosion, Appl. Catal. B Environ., 217, 485, 10.1016/j.apcatb.2017.05.058
Raizada, 2019, Converting type II AgBr/VO into ternary Z scheme photocatalyst via coupling with phosphorus doped g-C3N4 for enhanced photocatalytic activity, Sep. Purif. Technol., 227, 10.1016/j.seppur.2019.115692
Raizada, 2019, Ag 3 PO 4 modified phosphorus and sulphur co-doped graphitic carbon nitride as a direct Z-scheme photocatalyst for 2, 4-dimethyl phenol degradation, J. Photochem. Photobiol. A Chem., 374, 22, 10.1016/j.jphotochem.2019.01.015
Wongkalasin, 2011, Photocatalytic degradation of mixed azo dyes in aqueous wastewater using mesoporous-assembled TiO2 nanocrystal synthesized by a modified sol-gel process, Colloids Surfaces A Physicochem. Eng. Asp., 384, 519, 10.1016/j.colsurfa.2011.05.022
Gupta, 2006, Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2, Dye. Pigment., 69, 224, 10.1016/j.dyepig.2005.04.001
Chen, 2014, Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3, Appl. Catal. B Environ., 150–151, 564, 10.1016/j.apcatb.2013.12.053
Ding, 2011, Efficient visible light driven photocatalytic removal of NO with aerosol flow synthesized B, N-codoped TiO2 hollow spheres, J. Hazard. Mater., 190, 604, 10.1016/j.jhazmat.2011.03.099
He, 2014, BiOCl/BiVO\textsubscript{4} p–n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation, J. Phys. Chem. C., 118, 389, 10.1021/jp409598s
Mousavi, 2016, Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: Novel visible-light-driven photocatalysts based on graphitic carbon nitride, J. Colloid Interface Sci., 465, 83, 10.1016/j.jcis.2015.11.057
Wang, 2017, Applied Catalysis B : Environmental Atomic scale g-C 3 N 4 / Bi 2 WO 6 2D / 2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation, Appl. Catal. B, Environ., 209, 285, 10.1016/j.apcatb.2017.03.019
Jin, 2017, Simultaneous synthesis-immobilization of Ag nanoparticles functionalized 2D g-C3N4nanosheets with improved photocatalytic activity, J. Alloys Compd., 691, 763, 10.1016/j.jallcom.2016.08.302
Liang, 2018, New insight into the selective photocatalytic oxidation of RhB through a strategy of modulating radical generation, RSC Adv., 8, 13625, 10.1039/C8RA01810C
Hu, 2006, Oxidative decomposition of rhodamine B dye in the presence of VO 2+ and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization, J. Phys. Chem. B., 110, 26012, 10.1021/jp063588q
yi Wang, 2002, Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2photocatalysts, J. Photochem. Photobiol. A Chem., 148, 169, 10.1016/S1010-6030(02)00087-4