Cs3Bi2I9/g-C3N4 as a new binary photocatalyst for efficient visible-light photocatalytic processes

Separation and Purification Technology - Tập 251 - Trang 117320 - 2020
Bianca-Maria Bresolin1, Paolo Sgarbossa2, Detlef W. Bahnemann3,4,5, Mika Sillanpää6,7,8
1Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland
2Dipartimento di Ingegneria Industriale, Università di Padova, via Marzolo 9, 35131 Padova, Italy
3Institut für Technische Chemie, Leibniz Universität Hannover, Callinstr. 3, D-30167 Hannover, Germany
4Laboratory of Nano- and Quantum-Engineering (LNQE), Gottfried Wilhelm Leibniz University Hannover, Schneiderberg 39, D-30167 Hannover, Germany
5Laboratory “Photoactive Nanocomposite Materials”, Saint-Petersburg State University, Ulyanovskaya str. 1, Peterhof, 198504 Saint-Petersburg, Russia
6Institute of Research and Development, Duy Tan University, De Nang 550000, Viet Nam
7Faculty of Environmental and Chemical Engineering, Duy Tan University, De Nang 550000, Viet Nam
8School of Civil Engineering and Surveying, Faculty of Health, Engineering and Science, University of Southern Queensland, West Street, Toowoomba 4350, QLD, Australia

Tài liệu tham khảo

Hoffmann, 1995, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004 Patrocinio, 2015, Charge carrier dynamics and photocatalytic behavior of TiO<inf>2</inf> nanopowders submitted to hydrothermal or conventional heat treatment, RSC Adv., 5, 70536, 10.1039/C5RA13291F Spasiano, 2015, Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach, Appl. Catal. B Environ., 170–171, 90, 10.1016/j.apcatb.2014.12.050 Natarajan, 2014, Enhanced direct sunlight photocatalytic oxidation of methanol using nanocrystalline TiO2 calcined at different temperature, J. Nanoparticle Res., 16, 2713, 10.1007/s11051-014-2713-7 Kou, 2017, Selectivity Enhancement in Heterogeneous Photocatalytic Transformations, Chem. Rev., 117, 1445, 10.1021/acs.chemrev.6b00396 Yoon, 2010, Visible light photocatalysis as a greener approach to photochemical synthesis, Nat. Chem., 2, 527, 10.1038/nchem.687 Konstantinou, 2004, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review, Appl. Catal. B Environ., 49, 1, 10.1016/j.apcatb.2003.11.010 Kessler, 2017, Functional carbon nitride materials-design strategies for electrochemical devices, Nat. Rev. Mater., 2, 10.1038/natrevmats.2017.30 Liu, 2013, Application potential of carbon nanotubes in water treatment: A review, J. Environ. Sci. (China), 25, 1263, 10.1016/S1001-0742(12)60161-2 Chen, 2017, Particulate photocatalysts for overall water splitting, Nat. Rev. Mater., 2, 1, 10.1038/natrevmats.2017.50 Ran, 2018, Metal-Free 2D/2D Phosphorene/g-C 3 N 4 Van der Waals Heterojunction for Highly Enhanced Visible-Light Photocatalytic H 2 Production, Adv. Mater., 30, 2, 10.1002/adma.201800128 Joy, 2018, Nanomaterials for photoelectrochemical water splitting – review, Int. J. Hydrogen Energy., 43, 4804, 10.1016/j.ijhydene.2018.01.099 Zhang, 2016, Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation, Appl. Catal. B Environ., 180, 656, 10.1016/j.apcatb.2015.06.056 Qiu, 2014, Cobalt modified mesoporous graphitic carbon nitride with enhanced visible-light photocatalytic activity, RSC Adv., 4, 39969, 10.1039/C4RA06451H Lam, 2016, A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater, Mater. Sci. Semicond. Process., 47, 62, 10.1016/j.mssp.2016.02.019 Kumar, 2018, g-C3N4-Based Nanomaterials for Visible Light-Driven Photocatalysis, Catalysts., 8, 74, 10.3390/catal8020074 Park, 2016, Organic-inorganic halide perovskite photovoltaics: From fundamentals to device architectures, Org. Halide Perovskite Photovoltaics From Fundam. to Device Archit., 3, 1 Lee, 2014, Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor, J. Am. Chem. Soc., 136, 15379, 10.1021/ja508464w Kojima, 2009, Organometal Halide Perovskites as Visible- Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r Pérez-Osorio, 2015, Vibrational Properties of the Organic-Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra, J. Phys. Chem. C., 119, 25703, 10.1021/acs.jpcc.5b07432 Dualeh, 2014, Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells, ACS Nano., 8, 362, 10.1021/nn404323g Zai, 2018, Congeneric Incorporation of CsPbBr 3 Nanocrystals in a Hybrid Perovskite Heterojunction for Photovoltaic Efficiency Enhancement, ACS Energy Lett., 3, 30, 10.1021/acsenergylett.7b00925 Xu, 2017, A CsPbBr 3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction, J. Am. Chem. Soc., 139, 5660, 10.1021/jacs.7b00489 Noel, 2014, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications, Energy Environ. Sci., 7, 3061, 10.1039/C4EE01076K Park, 2015, Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application, Adv. Mater., 27, 6806, 10.1002/adma.201501978 Cuhadar, 2018, All-Inorganic Bismuth Halide Perovskite-Like Materials A 3 Bi 2 I 9 and A 3 Bi 1.8 Na 0.2 I 8.6 (A = Rb and Cs) for Low-Voltage Switching Resistive Memory, ACS Appl. Mater. Interfaces, 10, 29741, 10.1021/acsami.8b07103 Ou, 2018, Amino-Assisted Anchoring of CsPbBr 3 Perovskite Quantum Dots on Porous g-C3N4 for Enhanced Photocatalytic CO2 Reduction, Angew. Chemie - Int. Ed., 57, 13570, 10.1002/anie.201808930 Shi, 2015, Electrostatic Self-Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal-Organic Framework for Enhanced Photocatalytic CO<inf>2</inf> Reduction, Adv. Funct. Mater., 25, 5360, 10.1002/adfm.201502253 Tu, 2017, Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H2 Evolution and CO2 Reduction, ACS Sustain. Chem. Eng., 5, 7260, 10.1021/acssuschemeng.7b01477 Li, 2017, Amino-Mediated Anchoring Perovskite Quantum Dots for Stable and Low-Threshold Random Lasing, Adv. Mater., 29, 1, 10.1002/adma.201701185 De Roo, 2016, Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals, ACS Nano., 10, 2071, 10.1021/acsnano.5b06295 Sharma, 2019, Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review, J. Ind. Eng. Chem., 78, 1, 10.1016/j.jiec.2019.06.022 Zhang, 2014, Enhancement of visible light photocatalytic activities via porous structure of g-C3N4, Appl. Catal. B Environ., 147, 229, 10.1016/j.apcatb.2013.09.002 Yan, 2009, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir., 25, 10397, 10.1021/la900923z Tian, 2014, Novel g-C3N4/BiIO4heterojunction photocatalysts: Synthesis, characterization and enhanced visible-light-responsive photocatalytic activity, RSC Adv., 4, 42716, 10.1039/C4RA05917D Pal, 2018, Synthesis and Optical Properties of Colloidal M3Bi2I9 (M=Cs, Rb) Perovskite Nanocrystals, J. Phys. Chem. C., 122, 10.1021/acs.jpcc.8b03542 Bailar, 1974, INFRARED SPECTRA OF, 36 Cai, 2013, Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy, J. Polym. Environ., 21, 108, 10.1007/s10924-012-0534-2 S. Krzemińska, L. Lipińska, M. Woluntarski, M. Oleksy, C. Ślusarczyk, W. Biniaś, A. Smejda-Krzewicka, Hybrid XNBR composites with carbon and aluminosilicate nanofillers, (2019). http://doi.org/10.1007/s00289-019-02825-9. Joon, 2014, Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor, Electrochim. Acta., 116, 118, 10.1016/j.electacta.2013.11.040 Shandilya, 2018, Fabrication of fluorine doped graphene and SmVO4 based dispersed and adsorptive photocatalyst for abatement of phenolic compounds from water and bacterial disinfection, J. Clean. Prod., 203, 386, 10.1016/j.jclepro.2018.08.271 Yang, 2014, Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity, J. Hazard. Mater., 271, 150, 10.1016/j.jhazmat.2014.02.023 Lehner, 2015, Crystal and Electronic Structures of Complex Bismuth Iodides A3Bi2I9(A = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics, Chem. Mater., 27, 7137, 10.1021/acs.chemmater.5b03147 Aguirre, 2017, Matias; Zhou, Ruixin; Eugene, Alexis; Guzman, Marcelo; Grela, Cu2O/TiO2 heterostructure for CO2 reduction through a drect Z-scheme: Protecting Cu2O from photocorrosion, Appl. Catal. B Environ., 217, 485, 10.1016/j.apcatb.2017.05.058 Raizada, 2019, Converting type II AgBr/VO into ternary Z scheme photocatalyst via coupling with phosphorus doped g-C3N4 for enhanced photocatalytic activity, Sep. Purif. Technol., 227, 10.1016/j.seppur.2019.115692 Raizada, 2019, Ag 3 PO 4 modified phosphorus and sulphur co-doped graphitic carbon nitride as a direct Z-scheme photocatalyst for 2, 4-dimethyl phenol degradation, J. Photochem. Photobiol. A Chem., 374, 22, 10.1016/j.jphotochem.2019.01.015 Wongkalasin, 2011, Photocatalytic degradation of mixed azo dyes in aqueous wastewater using mesoporous-assembled TiO2 nanocrystal synthesized by a modified sol-gel process, Colloids Surfaces A Physicochem. Eng. Asp., 384, 519, 10.1016/j.colsurfa.2011.05.022 Gupta, 2006, Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2, Dye. Pigment., 69, 224, 10.1016/j.dyepig.2005.04.001 Chen, 2014, Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3, Appl. Catal. B Environ., 150–151, 564, 10.1016/j.apcatb.2013.12.053 Ding, 2011, Efficient visible light driven photocatalytic removal of NO with aerosol flow synthesized B, N-codoped TiO2 hollow spheres, J. Hazard. Mater., 190, 604, 10.1016/j.jhazmat.2011.03.099 He, 2014, BiOCl/BiVO\textsubscript{4} p–n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation, J. Phys. Chem. C., 118, 389, 10.1021/jp409598s Mousavi, 2016, Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: Novel visible-light-driven photocatalysts based on graphitic carbon nitride, J. Colloid Interface Sci., 465, 83, 10.1016/j.jcis.2015.11.057 Wang, 2017, Applied Catalysis B : Environmental Atomic scale g-C 3 N 4 / Bi 2 WO 6 2D / 2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation, Appl. Catal. B, Environ., 209, 285, 10.1016/j.apcatb.2017.03.019 Jin, 2017, Simultaneous synthesis-immobilization of Ag nanoparticles functionalized 2D g-C3N4nanosheets with improved photocatalytic activity, J. Alloys Compd., 691, 763, 10.1016/j.jallcom.2016.08.302 Liang, 2018, New insight into the selective photocatalytic oxidation of RhB through a strategy of modulating radical generation, RSC Adv., 8, 13625, 10.1039/C8RA01810C Hu, 2006, Oxidative decomposition of rhodamine B dye in the presence of VO 2+ and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization, J. Phys. Chem. B., 110, 26012, 10.1021/jp063588q yi Wang, 2002, Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2photocatalysts, J. Photochem. Photobiol. A Chem., 148, 169, 10.1016/S1010-6030(02)00087-4