Crystallographic analysis of TarI and TarJ, a cytidylyltransferase and reductase pair for CDP-ribitol synthesis in Staphylococcus aureus wall teichoic acid biogenesis

Journal of Structural Biology - Tập 213 - Trang 107733 - 2021
Franco K.K. Li1, Robert T. Gale2, Evgeniy V. Petrotchenko3,4, Christoph H. Borchers3,4,5, Eric D. Brown2, Natalie C.J. Strynadka1
1Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
2Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3ZS, Canada
3Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
4Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
5Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada

Tài liệu tham khảo

Afonine, 2012, Towards automated crystallographic structure refinement with phenix.refine, Acta Crystallogr. D. Biol. Crystallogr., 68, 352, 10.1107/S0907444912001308 Atilano, 2010, Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus, Proc. Natl. Acad. Sci. U. S. A., 107, 18991, 10.1073/pnas.1004304107 Baatarkhuu, 2018, Synthesis and Kinetic evaluation of an azido analogue of methylerythritol phosphate: a Novel Inhibitor of E. coli YgbP/IspD, Sci. Rep., 8, 17892, 10.1038/s41598-018-35586-y Badurina, 2003, CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values, Biochim. Biophys. Acta, 1646, 196, 10.1016/S1570-9639(03)00019-0 Baker, 2009, Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily, Proc. Natl. Acad. Sci., 106, 779, 10.1073/pnas.0807529106 Baker, 1992, Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity, J. Mol. Biol., 228, 662, 10.1016/0022-2836(92)90848-E Baur, 2009, Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae, J. Bacteriol., 191, 1200, 10.1128/JB.01120-08 Benavente, 2015, Enantioselective oxidation of galactitol 1-phosphate by galactitol-1-phosphate 5-dehydrogenase from Escherichia coli, Acta Crystallogr. Sect. D Biol. Crystallogr., 71, 1540, 10.1107/S1399004715009281 Brown, 2016, Antibacterial drug discovery in the resistance era, Nature, 529, 336, 10.1038/nature17042 Campbell, 2011, Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus, ACS Chem. Biol., 6, 106, 10.1021/cb100269f Caveney, 2018, Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways, Curr. Opin. Struct. Biol., 53, 45, 10.1016/j.sbi.2018.05.002 Celniker, 2013, ConSurf: Using evolutionary data to raise testable hypotheses about protein function, Isr. J. Chem., 53, 199, 10.1002/ijch.201200096 Chen, 2012, Expression, purification, crystallization and preliminary X-ray analysis of ribitol-5-phosphate cytidylyltransferase from Bacillus subtilis., Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun., 68, 1195, 10.1107/S1744309112035142 D’Elia, M.A, Millar, K.E., Bhavsar, A.P., Tomljenovic, A.M., Hutter, B., Schaab, C., Moreno-Hagelsieb, G., Brown, E.D., 2009. Probing teichoic acid genetics with bioactive molecules reveals new interactions among diverse processes in bacterial cell wall biogenesis. Chem. Biol. 16, 548–56. https://doi.org/10.1016/j.chembiol.2009.04.009. D’Elia, M.A, Pereira, M.P., Chung, Y.S., Zhao, W., Chau, A., Kenney, T.J., Sulavik, M.C., Black, T. a, Brown, E.D., 2006. Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J. Bacteriol. 188, 4183–9. https://doi.org/10.1128/JB.00197-06. De Vries, 2010, The HADDOCK web server for data-driven biomolecular docking, Nat. Protoc., 5, 883, 10.1038/nprot.2010.32 Denapaite, 2012, Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: lessons from genomes, Microb. Drug Resist., 18, 344, 10.1089/mdr.2012.0026 Eklund, 1982, Binding of substrate in a ternary complex of horse liver alcohol dehydrogenase, J. Biol. Chem., 257, 14349, 10.1016/S0021-9258(19)45387-8 Eklund, 2008, Medium- and short-chain dehydrogenase/reductase gene and protein families: Three-dimensional structures of MDR alcohol dehydrogenases, Cell. Mol. Life Sci., 65, 3907, 10.1007/s00018-008-8589-x Eklund, 1981, Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9 Å resolution, J. Mol. Biol., 146, 561, 10.1016/0022-2836(81)90047-4 Elander, 2003, Industrial production of beta-lactam antibiotics, Appl. Microbiol. Biotechnol., 61, 385, 10.1007/s00253-003-1274-y Emsley, 2010, Features and development of Coot, Acta Crystallogr. D. Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493 Farha, M.A, Leung, A., Sewell, E.W., D’Elia, M. a, Allison, S.E., Ejim, L., Pereira, P.M., Pinho, M.G., Wright, G.D., Brown, E.D., 2013. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem. Biol. 8, 226–33. https://doi.org/10.1021/cb300413m. Fong, D.H., Yim, V.C.-N., D’Elia, M. a, Brown, E.D., Berghuis, A.M., 2006. Crystal structure of CTP:glycerol-3-phosphate cytidylyltransferase from Staphylococcus aureus: examination of structural basis for kinetic mechanism. Biochim. Biophys. Acta 1764, 63–9. https://doi.org/10.1016/j.bbapap.2005.10.015. Formstone, 2008, Localization and Interactions of Teichoic Acid Synthetic Enzymes in Bacillus subtilis, J. Bacteriol., 190, 1812, 10.1128/JB.01394-07 Grochulski, 2011, Beamline 08ID-1, the prime beamline of the Canadian macromolecular crystallography facility, J. Synchrotron Radiat., 18, 681, 10.1107/S0909049511019431 Jin, 2016, A structural and functional study on the 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase (IspD) from Bacillus subtilis, Sci. Rep., 6, 1, 10.1038/srep36379 Kawai, 2011, A widespread family of bacterial cell wall assembly proteins, EMBO J., 30, 4931, 10.1038/emboj.2011.358 Kojima, 1983, Structure of linkage region between ribitol teichoic acid and peptidoglycan in cell walls of Staphylococcus aureus H, J. Biol. Chem., 258, 9043, 10.1016/S0021-9258(17)44628-X Kunfermann, 2014, Pseudilins: Halogenated, allosteric inhibitors of the non-mevalonate pathway enzyme IspD, Angew. Chemie - Int. Ed., 53, 2235, 10.1002/anie.201309557 Lange, 2000, Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes, Proc. Natl. Acad. Sci., 97, 13172, 10.1073/pnas.240454797 Laskowski, 2011, LigPlot+: multiple ligand-protein interaction diagrams for drug discovery, J. Chem. Inf. Model., 51, 2778, 10.1021/ci200227u Lazarevic, 1995, The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids, Mol. Microbiol., 16, 345, 10.1111/j.1365-2958.1995.tb02306.x McCoy, 2007, Phaser crystallographic software, J. Appl. Crystallogr., 40, 658, 10.1107/S0021889807021206 Meredith, 2008, Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus, J. Bacteriol., 190, 3046, 10.1128/JB.01880-07 Merkley, 2014, Distance restraints from crosslinking mass spectrometry: Mining a molecular dynamics simulation database to evaluate lysine-lysine distances, Protein Sci., 23, 747, 10.1002/pro.2458 Pauly, 2003, X-ray crystallographic and kinetic studies of human sorbitol dehydrogenase, Structure, 11, 1071, 10.1016/S0969-2126(03)00167-9 Pereira, 2004, Bifunctional catalysis by CDP-ribitol synthase: convergent recruitment of reductase and cytidylyltransferase activities in Haemophilus influenzae and Staphylococcus aureus, Biochemistry, 43, 11802, 10.1021/bi048866v Pereira, 2008, Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases, J. Bacteriol., 190, 5642, 10.1128/JB.00526-08 Petrotchenko, 2014, DXMSMS match program for automated analysis of LC-MS/MS data obtained using isotopically coded CID-cleavable cross-linking reagents, Curr. Protoc. Bioinforma., 48, 8.18.1-19, 10.1002/0471250953.bi0818s48 Pettersen, 2004, UCSF Chimera–a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084 Price, 2016, Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD. Sci. Rep., 6, 1 Qian, 2006, Genomic characterization of ribitol teichoic acid synthesis in Staphylococcus aureus: genes, genomic organization and gene duplication, BMC Genomics, 7, 74, 10.1186/1471-2164-7-74 Richard, S.B., Bowman, M.E., Kwiatkowski, W., Kang, I., Chow, C., Lillo, a M., Cane, D.E., Noel, J.P., 2001. Structure of 4-diphosphocytidyl-2-C- methylerythritol synthetase involved in mevalonate- independent isoprenoid biosynthesis. Nat. Struct. Biol. 8, 641–648. https://doi.org/10.1038/89691. Richard, 2004, Kinetic analysis of Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase, wild type and mutants, reveals roles of active site amino acids, Biochemistry, 43, 12189, 10.1021/bi0487241 Riemersma, 2015, Human ISPD Is a Cytidyltransferase Required for Dystroglycan O-Mannosylation, Chem. Biol., 22, 1643, 10.1016/j.chembiol.2015.10.014 Riveros-Rosas, 2003, Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily, Eur. J. Biochem., 270, 3309, 10.1046/j.1432-1033.2003.03704.x Robert, 2014, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res., 42, W320, 10.1093/nar/gku316 Salentin, 2015, PLIP: fully automated protein–ligand interaction profiler, Nucleic Acids Res., 43, W443, 10.1093/nar/gkv315 Schlag, 2010, Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl, Mol. Microbiol., 75, 864, 10.1111/j.1365-2958.2009.07007.x Schwab, 2017, Mechanism of allosteric inhibition of the enzyme IspD by three different classes of ligands, ACS Chem. Biol., 12, 2132, 10.1021/acschembio.7b00004 Shevchenko, 2007, In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat. Protoc., 1, 2856, 10.1038/nprot.2006.468 The PyMOL Molecular Graphics System, 2019. Version 2.3 Schrödinger, LLC. Vedadi, M., Niesen, F.H., Allali-Hassani, A., Fedorov, O.Y., Finerty, P.J., Wasney, G.A, Yeung, R., Arrowsmith, C., Ball, L.J., Berglund, H., Hui, R., Marsden, B.D., Nordlund, P., Sundstrom, M., Weigelt, J., Edwards, A.M., 2006. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc. Natl. Acad. Sci. U. S. A. 103, 15835–40. https://doi.org/10.1073/pnas.0605224103. Weidenmaier, 2005, Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis, J. Infect. Dis., 191, 1771, 10.1086/429692 Weissgerber, 2017, Data visualization, bar naked: A free tool for creating interactive graphics, J. Biol. Chem., 292, 20592, 10.1074/jbc.RA117.000147 Winn, 2011, Overview of the CCP4 suite and current developments, Acta Crystallogr. Sect. D Biol. Crystallogr., 67, 235, 10.1107/S0907444910045749 Witschel, 2011, Inhibitors of the herbicidal target IspD: Allosteric site binding, Angew. Chemie - Int. Ed., 50, 7931, 10.1002/anie.201102281 Wungsintaweekul, J., 2001. Enzymes of the Alternative Terpenoid Pathway in Escherichia coli. Xia, 2010, The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus, Int. J. Med. Microbiol., 300, 148, 10.1016/j.ijmm.2009.10.001 Zalacain, 2003, A global approach to identify novel broad-spectrum antibacterial targets among proteins of unknown function, J. Mol. Microbiol. Biotechnol., 6, 109 Zolli, 2001, Reduction precedes cytidylyl transfer without substrate channeling in distinct active sites of the bifunctional CDP-ribitol synthase from Haemophilus influenzae, Biochemistry, 40, 5041, 10.1021/bi002745n