Crystallization of Magnetic Iron Oxide Nanoparticles during Chemical Synthesis from Iron Salt Solutions with Exposure to Ultrasound

Pleiades Publishing Ltd - Tập 97 - Trang 1526-1531 - 2023
A. M. Nikolaev1,2, A. S. Kovalenko1, K. V. Frolov3, G. P. Kopitsa1,4, A. E. Baranchikov5, O. A. Shilova1,6
1Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
4National Research Center Kurchatov Institute, Gatchina, Russia
5Kurnakov Institute of General and Inorganic Chemistry, Moscow, Russia
6St. Petersburg State Electrotechnical University, St. Petersburg, Russia

Tóm tắt

Iron oxide nanopowders are synthesized via chemical precipitation. It is shown that synthesis produces an iron oxide phase with a magnetite structure (either a magnetite–maghemite solid solution or a mixture of this solid solution and goethite). The sizes of the CSR and particles for the main phase are ~10–20 nm. The synthesized iron oxide powders have developed surfaces, specific surface area SBET ≈ 92 and 117 m2/g, and identical fairly large specific pore volumes ( $${{V}_{P}}{{_{{/{{P}_{0}} \to 0.99}}}_{{}}}$$ = 0.35 cm3/g). It is shown that additional in situ ultrasonic treatment of the magnetic iron oxide nanoparticles in the mother liquor results in abrupt oxidation of iron(II) ions and creates a nonmagnetic impurity phase of goethite.

Tài liệu tham khảo

K. Jiang, L. Zhang, and G. Bao, Curr. Opin. Biomed. Eng. 20, 100330 (2021). Y. Ruan, L. Kong, Y. Zhong, et al., J. Clean. Prod. 321, 128924 (2021). F. Yakasai, M. Z. Jaafar, S. Bandyopadhyay, et al., J. Pet. Sci. Eng. (2021). T. Saragi, A. S. Santika, B. Permana, et al., Conf. Ser.: Mater. Sci. Eng. 196, 012025 (2017). https://doi.org/10.1088/1757-899x/196/1/012025 S. F. Hasany, N. H. Abdurahman, A. R. Sunarti, and R. Jose, Curr. Nanosci. 9, 561 (2013). https://doi.org/10.2174/15734137113099990085 S. A. M. K. Ansari, E. Ficiarà, F. A. Ruffinatti, et al., Materials 12, 465 (2019). https://doi.org/10.3390/ma12030465 S. P. Schwaminger, C. Syhr, and S. Berensmeier, Crystals 10, 214 (2020). https://doi.org/10.3390/cryst10030214 H. Rashid, M. A. Mansoor, B. Haider, et al., Sep. Sci. Technol. 55, 1207 (2019). https://doi.org/10.1080/01496395.2019.1585876 S. Laurent, D. Forge, M. Port, et al., Chem. Rev. 108, 2064 (2008). O. A. Shilova, A. M. Nikolaev, A. S. Kovalenko, A. A. Sinel’nikov, G. P. Kopitsa, and A. E. Baranchikov, Russ. J. Inorg. Chem. 65, 426 (2020). Hayato Koizumi, Md. Azhar Uddin, and Yoshiei Kato, Inorg. Chem. Commun. 124, 1084 (2021). https://doi.org/10.1016/j.inoche.2020.10840000 M. J. Eskandari and I. Hasanzadeh, Mater. Sci. Eng. B 266, 115050 (2021). M. A. Chuev, J. Magn. Magn. Mater. 470, 12 (2019).https://doi.org/10.1016/j.jmmm.2017.11.091 S. Nasrazadani and A. Raman, Corros. Sci. 34, 1355 (1993). J. W. Anthony, R. A. Bideaux, and K. W. Bladh, Magnetite. Handbook of Mineralogy (Mineral. Soc. Am., Chantilly, VA, 2018). C. Pecharroman, T. Gonzalez-Carreno, and J. E. Iglesias, Phys. Chem. Miner. 22, 21 (1995). R. Zboril, M. Mashlan, and D. Petridis, Chem. Mater. 14, 969 (2002). J. Fock, L. K. Bogart, D. Gonzalez-Alonso, et al., J. Phys. D: Appl. Phys. 50, 265005 (2017).