Kết tinh trong thủy tinh kim loại khối Zr60Al15Ni25 bị cuộn ở nhiệt độ phòng

Science China Technological Sciences - Tập 53 - Trang 278-283 - 2010
ZhiJie Yan1, Jun Yan1, Yong Hu1, ShuE Dang1
1School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, China

Tóm tắt

Sự tiến hóa của vi cấu trúc của thủy tinh kim loại khối Zr60Al15Ni25 trong quá trình cuộn ở nhiệt độ phòng được nghiên cứu bằng phương pháp quét nhiệt vi sai (DSC), kính hiển vi điện tử truyền qua độ phân giải cao (HRTEM) và nhiễu xạ điện tử vùng chọn (SAED). Ảnh HRTEM cho thấy các thể bền vững bị tạo ra trong các mẫu đã được cuộn, cho thấy bản chất của biến dạng không đồng nhất do quá trình cuộn, và có sự tồn tại của các tinh thể nano với kích thước khoảng 5–10 nm trong các khu vực chuyển tiếp giữa các thể bền vững và ma trận chưa biến dạng trong các mẫu được cuộn với các mức độ biến dạng 80% và 95%. Dựa trên mô hình cấu trúc đa diện và lý thuyết vùng biến hình cắt (STZ), ảnh hưởng của dòng nhớt, thể tích tự do, độ nhớt và tình trạng ứng suất đến hành vi kết tinh trong thủy tinh kim loại trong quá trình cuộn được thảo luận.

Từ khóa

#Zr60Al15Ni25 #thủy tinh kim loại #cuộn #vi cấu trúc #kết tinh

Tài liệu tham khảo

Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 2000, 48: 279–306 Cao Q P, Li J F, Zhou Y H. Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass. Appl Phys Lett, 2005, 86: 081913 Chen M W, Dutta J, Zhang T, et al. Kinetic evidence for the structural similarity between a supercooled liquid and an icosahedral phase in Zr65Al7.5-Ni10Cu12.5Ag5 bulk metallic glass. Appl Phys Lett, 2001, 79: 42–44 Chen M W, Inoue A, Zhang T, et al. Quasicrystals and nano-quasicrystals in annealed ZrAlNiCuAg metallic glasses. Intermetallics, 2000, 8: 493–498 Liu L, Wu Z F, Zhang J. Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloy. J Alloys Compd, 2002, 339: 90–95 Zhuang Y X, Wang W H, Zhang Y, et al. Crystallization kinetics and glass transition of Zr41Ti14Cu12.5Ni10−xFexBe22.5 bulk metallic glasses. Appl Phys Lett, 1999, 75: 2392–2394 Fan C, Inoue A. Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl Phys Lett, 2000, 77: 46–48 Li C F, Saida J, Matsushida M, et al. Crystallization process of Zr60Ni25Al15 amorphous alloy. Mater Lett, 2000, 44: 80–86 Yavari A R, Moulec A L, Inoue A. Metastable phases in Zr-based bulk glass-forming alloys detected using a synchrotron beam in transmission. Mater Sci Eng A, 2001, 304: 34–38 Lundberg M, Krishan K, Xu N, et al. Reversible plastic events in amorphous materials. Phys Rev E, 2008, 77: 041505 Chen M W. Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu Rev Mater Res, 2008, 38: 445–469 Spaepen F. Metallic glasses: Must shear bands be hot? Nat Mater, 2006, 5: 7–8 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 2005, 46: 2817–2829 Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses. Nature, 2006, 439: 419–425 Zhang Y, Greer A L. Thickness of shear bands in metallic glasses. Appl Phys Lett, 2006, 89: 071907 Dai L H, Yan M, Liu L F, et al. Adiabatic shear banding instability in bulk metallic glasses. Appl Phys Lett, 2005, 87: 141916 Greer A L, Lewandowski J J. Temperature rise at shear bands in metallic glasses. Nat Mater, 2006, 5: 15–18 Taub A I, Spaepen F. The kinetics of structural relaxation of a metallic glass. Acta Metall, 1980, 28: 1781–1788 Cohen M H, Turnbull D. Molecular transport in liquids and glasses. J Chem Phys, 1959, 31: 1164–1171 Kim J J, Choi Y, Suresh S, et al. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science, 2002, 295: 654–657 Jiang W H, Atzmon M. The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: a high-resolution transmission electron microscopy study. Acta Mater, 2003, 51: 4095–4105 Cao Q P, Li J F, Hua Y, et al. Deformation-strengthening during rolling Cu60Zr20Ti20 bulk metallic glass. Mater Sci Eng A, 2007, 457: 94–99 Kwon Y S, Kim J S. Role of local heating in crystallization of amorphous alloys under ball milling: An experiment on Fe90Zr10. Phys Rev B, 2007, 75: 144112 Trudeau M L, Schulz R, Dussault D, et al. Structural changes during high-energy ball milling of iron-based amorphous alloys: Is high-energy ball milling equivalent to a thermal process? Phys Rev Lett, 1990, 64: 99–102 Li W, Li L L, Nan Y, et al. Nanocrystallization and magnetic properties of amorphous Nd9Fe85B6 subjected to high-pressure torsion deformation upon annealing. J Appl Phys, 2008, 104: 023912 Yan Z J., Li J F., Zhou Y H. et al. Phase transition in the Zr60Al15Ni25 bulk metallic glass subjected to rolling at room temperature. Sci China Seri E-Tech Sci, 2006, 49: 655–662 Langer J S, Pechenik L. Dynamics of shear-transformation zones in amorphous plasticity: Energetic constraints in minimal theory. Phys Rev E, 2003, 68: 061507 Kanungo B P, Lambert M J, Flores K M. Free Volume Changes and Crack Tip Deformation in Bulk Metallic Glass Alloys and their Composites. Mater Res Soc Symp, 2004, 806: MM7.1, 1–12 Waniuk T A, Busch R, Masuhr A, et al. Equilibrium viscosity of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass-forming liquid and viscous flow during relaxation, phase separation, and primary crystallization. Acta Mater, 1998, 46: 5229–5236 Hajlaoui K, Benameur T, Vaughan G, et al. Thermal expansion and indentation-induced free volume in Zr-based metallic glasses measured by real-time diffraction using synchrotron radiation. Scripta Mater, 2004, 51: 843–848 Flores K M, Suh D, Dauskardt R H. Characterization of free volume in a bulk metallic glass using positron annihilation spectroscopy. J Mater Res, 2002, 17: 1153–1161 Wright W J, Hufnagel T C, Nix W D. Free volume coalescence and void formation in shear bands in metallic glass. J Appl Phys, 2003, 93: 1432–1437 Yan J, Yan Z J, Tuo L F. Microstructure evolution of Zr60Al15Ni25 bulk metallic glass subjected to rolling at room temperature. J Alloys Compounds (submitted). Bakke E, Bush R, Johnson W L. The viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy in the supercooled liquid. Appl Phys Lett, 1995, 67: 3260–3262 Bernal J D, Geometry of the structure of monatomic liquids. Nature, 1960, 185: 68–70. Ogura A, Tarumi R, Shimojo M, et al. Control of nanocrystalline orientation using the application of a stress field in an amorphous alloy. Appl Phys Lett, 2001, 79: 1042–1044 Ogura A, Sato M, Tarumi R, et al. Formation of nano-sized crystals during plastic deformation in amorphous alloys. Mater Res Soc Symp, 2001, 634: Bl.10.1–10.6 Kim K B, Das J, Lee M H, et al. Propagation of shear bands in a Cu47.5Zr47.5 Al5 bulk metallic glass. J Mater Res, 2008, 23: 6–12 Mueth D M, Debregeas G F, Karczmar G S, et al. Signatures of granular microstructure in dense shear flows. Nature, 2000, 406: 385–389 Lee S W, Huh M Y, Chae S W, et al. Mechanism of the deformationinduced nanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression. Scripta Mater, 2006, 54: 1439–1444 Zhuang Y X, Jiang J Z, Zhou T J, et al. Pressure effects on Al89La6Ni5 amorphous alloy crystallization. Appl Phys Lett, 2000, 77: 4133–4135 Yan Z J, Dang S E, Wang X H, et al. Applicability of Johnson-Mehl-Avrami model to crystallization kinetics of Zr60Al15Ni25 bulk amorphous alloy. Trans Nonferrous Met Soc China, 2008, 18: 138–144 Yan Z J. Microstructure evolution evolution during the plastic deformation in metallic glasses. Post-doctor Research Report. Shanghai: Shanghai Jiao Tong University, 2006