Crystallization evoked surface defects in layered titanates for high-performance sodium storage

Energy Storage Materials - Tập 25 - Trang 537-546 - 2020
Lan-Fang Que1, Fu-Da Yu1, Liang Deng1, Da-Ming Gu1, Zhen-Bo Wang1
1MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban, Water Resource and Environment, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China

Tài liệu tham khảo

Kim, 2012, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2, 710, 10.1002/aenm.201200026 Slater, 2013, Sodium-ion batteries, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691 Yabuuchi, 2014, Research development on sodium-ion batteries, Chem. Rev., 114, 11636, 10.1021/cr500192f Hou, 2015, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life, Adv. Mater., 27, 7861, 10.1002/adma.201503816 Muñoz-Márquez, 2017, Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation, Adv. Energy Mater., 7, 1700463, 10.1002/aenm.201700463 Zheng, 2018, Sodium metal anodes for room-temperature sodium-ion batteries: applications, challenges and solutions, Energy Storage Mater, 16, 6, 10.1016/j.ensm.2018.04.014 Huang, 2018, Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials, Adv. Energy Mater., 8, 1702582, 10.1002/aenm.201702582 Xu, 2017, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al) -ion batteries, Adv. Sci., 4, 1700146, 10.1002/advs.201700146 Zou, 2019, Kinetic well-matched full-carbon sodium-ion capacitor, J. Mater. Chem., 7, 13540, 10.1039/C9TA03797G Gao, 2019, Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage, Energy Storage Mater, 16, 46, 10.1016/j.ensm.2018.04.027 Stevens, 2011, The mechanisms of lithium and sodium insertion in carbon materials, J. Electrochem. Soc., 148, A803, 10.1149/1.1379565 Tsai, 2015, Study of sodium intercalation into disordered carbon, J. Mater. Chem., 3, 9763, 10.1039/C5TA01443C Wen, 2014, Expanded graphite as superior anode for sodium-ion batteries, Nat. Commun., 5, 4033, 10.1038/ncomms5033 Kim, 2016, Recent progress in electrode materials for sodium-ion batteries, Adv. Energy Mater., 6, 1600943, 10.1002/aenm.201600943 Kim, 2013, An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries, Adv. Mater., 25, 3045, 10.1002/adma.201204877 Zhu, 2013, Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir, Nano Lett., 13, 3093, 10.1021/nl400998t Qu, 2014, Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material, Adv. Mater., 26, 3854, 10.1002/adma.201306314 Ren, 2017, Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability, Adv. Funct. Mater., 27, 1702116, 10.1002/adfm.201702116 Xiao, 2016, The application of metal sulfides in sodium ion batteries, Adv. Energy Mater., 7, 1601329, 10.1002/aenm.201601329 Xu, 2013, Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries, Chem. Commun., 49, 8973, 10.1039/c3cc45254a Sun, 2013, Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries, Nat. Commun., 4, 1870, 10.1038/ncomms2878 Muñozmárquez, 2015, Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and auger parameter analysis, ACS Appl. Mater. Interfaces, 7, 7801, 10.1021/acsami.5b01375 Xu, 2014, Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery, Chem. Commun., 50, 12564, 10.1039/C4CC03973D Rudola, 2013, Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries, Chem. Commun., 49, 7451, 10.1039/c3cc44381g Li, 2015, Molten salt electrochemical synthesis of sodium titanates as high performance anode materials for sodium ion batteries, J. Mater. Chem., 3, 16495, 10.1039/C5TA03250D Wang, 2013, Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates, Nanoscale, 5, 594, 10.1039/C2NR32661B Wu, 2017, Insight into the origin of capacity fluctuation of Na2Ti6O13 anode in sodium ion batteries, ACS Appl. Mater. Interfaces, 9, 43596, 10.1021/acsami.7b11507 Que, 2018, Tuning lattice spacing in titanate nanowire arrays for enhanced sodium storage and long-term stability, Nano Energy, 45, 337, 10.1016/j.nanoen.2018.01.014 Guo, 2016, Recent advances in titanium-based electrode materials for stationary sodium-ion batteries, Energy Environ. Sci., 9, 2978, 10.1039/C6EE01807F Bao, 2016, Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries, Nat. Commun., 7, 12108, 10.1038/ncomms12108 Dong, 2017, A robust and conductive black tin oxide nanostructure makes efficient lithium-ion batteries possible, Adv. Mater., 29, 1700136, 10.1002/adma.201700136 Chen, 2016, Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries, Adv. Funct. Mater., 25, 6793, 10.1002/adfm.201502978 Que, 2017, Robust and conductive Na2Ti2O5-x nanowire arrays for high-performance flexible sodium-ion capacitor, Chem. Mater., 29, 9133, 10.1021/acs.chemmater.7b02864 Fu, 2016, Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries, Nano Lett., 16, 4544, 10.1021/acs.nanolett.6b01805 Que, 2016, 3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors, J. Mater. Chem., 4, 8716, 10.1039/C6TA02413K Que, 2019, Thermal-induced interlayer defect engineering toward super high-performance sodium ion capacitors, Nano Energy, 59, 17, 10.1016/j.nanoen.2019.02.030 Li, 2018, Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes, Angew. Chem. Int. Ed., 57, 5278, 10.1002/anie.201713229 Zheng, 2017, Depolarization effect to enhance the performance of lithium ions batteries, Nano Energy, 33, 497, 10.1016/j.nanoen.2017.02.011 Augustyn, 2013, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat. Mater., 12, 518, 10.1038/nmat3601 Weppner, 1977, Electrochemical investigation of the chemical diffusion, partial ionic conductivities, and other kinetic parameters in Li3Sb and Li3Bi, J. Electrochem. Soc., 22, 297 Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Wang, 2014, First-principles study on transition metal-doped anatase TiO2, Nanoscale Res. Lett., 9, 46, 10.1186/1556-276X-9-46 Kong, 2016, First-principles study on TiO2-B with oxygen vacancies as a negative material of rechargeable lithium-ion batteries, Acta Phys. - Chim. Sin., 32, 656, 10.3866/PKU.WHXB201512292 Sale, 2012, 3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes, J. Appl. Crystallogr., 45, 1054, 10.1107/S0021889812032906 Pan, 2013, Sodium storage and transport properties in layered na2ti3o7 for room-temperature sodium-ion batteries, Adv. Energy Mater., 3, 1186, 10.1002/aenm.201300139 Ling, 2017, Anomalously high Na+ and low Li+ mobility in intercalated Na2Ti6O13, Phys. Chem. Chem. Phys., 19, 10036, 10.1039/C7CP01138E Deng, 2019, Facile one-step carbothermal reduction synthesis of Na3V2(PO4)2F3/C serving as cathode for sodium ion batteries, Electrochim. Acta, 298, 459, 10.1016/j.electacta.2018.12.131 Zhang, 2015, Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries, Small, 11, 3822, 10.1002/smll.201500783 López, 2015, High performance full sodium-ion cell based on a nanostructured transition metal oxide as negative electrode, Chem, 21, 14879, 10.1002/chem.201502050 Wang, 2015, A type of sodium-ion full-cell with layered NaNi0.5Ti0.5O2 cathode and pre-sodiated hard carbon anode, RSC Adv., 5, 106519, 10.1039/C5RA21235A Barpanda, 2014, 3.8-V earth-abundant sodium battery electrode, Nat. Commun., 5, 4358, 10.1038/ncomms5358 Guo, 2015, High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2, Energy Environ. Sci., 8, 1237, 10.1039/C4EE03361B Wang, 2015, P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries, Nat. Commun., 6, 6954, 10.1038/ncomms7954 Hartung, 2014, Sodium vanadium oxide: a new material for high-performance symmetric sodium-ion batteries, ChemPhysChem, 15, 2121, 10.1002/cphc.201402020