Crystallization evoked surface defects in layered titanates for high-performance sodium storage
Tài liệu tham khảo
Kim, 2012, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2, 710, 10.1002/aenm.201200026
Slater, 2013, Sodium-ion batteries, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691
Yabuuchi, 2014, Research development on sodium-ion batteries, Chem. Rev., 114, 11636, 10.1021/cr500192f
Hou, 2015, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life, Adv. Mater., 27, 7861, 10.1002/adma.201503816
Muñoz-Márquez, 2017, Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation, Adv. Energy Mater., 7, 1700463, 10.1002/aenm.201700463
Zheng, 2018, Sodium metal anodes for room-temperature sodium-ion batteries: applications, challenges and solutions, Energy Storage Mater, 16, 6, 10.1016/j.ensm.2018.04.014
Huang, 2018, Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials, Adv. Energy Mater., 8, 1702582, 10.1002/aenm.201702582
Xu, 2017, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al) -ion batteries, Adv. Sci., 4, 1700146, 10.1002/advs.201700146
Zou, 2019, Kinetic well-matched full-carbon sodium-ion capacitor, J. Mater. Chem., 7, 13540, 10.1039/C9TA03797G
Gao, 2019, Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage, Energy Storage Mater, 16, 46, 10.1016/j.ensm.2018.04.027
Stevens, 2011, The mechanisms of lithium and sodium insertion in carbon materials, J. Electrochem. Soc., 148, A803, 10.1149/1.1379565
Tsai, 2015, Study of sodium intercalation into disordered carbon, J. Mater. Chem., 3, 9763, 10.1039/C5TA01443C
Wen, 2014, Expanded graphite as superior anode for sodium-ion batteries, Nat. Commun., 5, 4033, 10.1038/ncomms5033
Kim, 2016, Recent progress in electrode materials for sodium-ion batteries, Adv. Energy Mater., 6, 1600943, 10.1002/aenm.201600943
Kim, 2013, An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries, Adv. Mater., 25, 3045, 10.1002/adma.201204877
Zhu, 2013, Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir, Nano Lett., 13, 3093, 10.1021/nl400998t
Qu, 2014, Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material, Adv. Mater., 26, 3854, 10.1002/adma.201306314
Ren, 2017, Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability, Adv. Funct. Mater., 27, 1702116, 10.1002/adfm.201702116
Xiao, 2016, The application of metal sulfides in sodium ion batteries, Adv. Energy Mater., 7, 1601329, 10.1002/aenm.201601329
Xu, 2013, Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries, Chem. Commun., 49, 8973, 10.1039/c3cc45254a
Sun, 2013, Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries, Nat. Commun., 4, 1870, 10.1038/ncomms2878
Muñozmárquez, 2015, Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and auger parameter analysis, ACS Appl. Mater. Interfaces, 7, 7801, 10.1021/acsami.5b01375
Xu, 2014, Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery, Chem. Commun., 50, 12564, 10.1039/C4CC03973D
Rudola, 2013, Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries, Chem. Commun., 49, 7451, 10.1039/c3cc44381g
Li, 2015, Molten salt electrochemical synthesis of sodium titanates as high performance anode materials for sodium ion batteries, J. Mater. Chem., 3, 16495, 10.1039/C5TA03250D
Wang, 2013, Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates, Nanoscale, 5, 594, 10.1039/C2NR32661B
Wu, 2017, Insight into the origin of capacity fluctuation of Na2Ti6O13 anode in sodium ion batteries, ACS Appl. Mater. Interfaces, 9, 43596, 10.1021/acsami.7b11507
Que, 2018, Tuning lattice spacing in titanate nanowire arrays for enhanced sodium storage and long-term stability, Nano Energy, 45, 337, 10.1016/j.nanoen.2018.01.014
Guo, 2016, Recent advances in titanium-based electrode materials for stationary sodium-ion batteries, Energy Environ. Sci., 9, 2978, 10.1039/C6EE01807F
Bao, 2016, Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries, Nat. Commun., 7, 12108, 10.1038/ncomms12108
Dong, 2017, A robust and conductive black tin oxide nanostructure makes efficient lithium-ion batteries possible, Adv. Mater., 29, 1700136, 10.1002/adma.201700136
Chen, 2016, Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries, Adv. Funct. Mater., 25, 6793, 10.1002/adfm.201502978
Que, 2017, Robust and conductive Na2Ti2O5-x nanowire arrays for high-performance flexible sodium-ion capacitor, Chem. Mater., 29, 9133, 10.1021/acs.chemmater.7b02864
Fu, 2016, Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries, Nano Lett., 16, 4544, 10.1021/acs.nanolett.6b01805
Que, 2016, 3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors, J. Mater. Chem., 4, 8716, 10.1039/C6TA02413K
Que, 2019, Thermal-induced interlayer defect engineering toward super high-performance sodium ion capacitors, Nano Energy, 59, 17, 10.1016/j.nanoen.2019.02.030
Li, 2018, Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes, Angew. Chem. Int. Ed., 57, 5278, 10.1002/anie.201713229
Zheng, 2017, Depolarization effect to enhance the performance of lithium ions batteries, Nano Energy, 33, 497, 10.1016/j.nanoen.2017.02.011
Augustyn, 2013, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat. Mater., 12, 518, 10.1038/nmat3601
Weppner, 1977, Electrochemical investigation of the chemical diffusion, partial ionic conductivities, and other kinetic parameters in Li3Sb and Li3Bi, J. Electrochem. Soc., 22, 297
Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Wang, 2014, First-principles study on transition metal-doped anatase TiO2, Nanoscale Res. Lett., 9, 46, 10.1186/1556-276X-9-46
Kong, 2016, First-principles study on TiO2-B with oxygen vacancies as a negative material of rechargeable lithium-ion batteries, Acta Phys. - Chim. Sin., 32, 656, 10.3866/PKU.WHXB201512292
Sale, 2012, 3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes, J. Appl. Crystallogr., 45, 1054, 10.1107/S0021889812032906
Pan, 2013, Sodium storage and transport properties in layered na2ti3o7 for room-temperature sodium-ion batteries, Adv. Energy Mater., 3, 1186, 10.1002/aenm.201300139
Ling, 2017, Anomalously high Na+ and low Li+ mobility in intercalated Na2Ti6O13, Phys. Chem. Chem. Phys., 19, 10036, 10.1039/C7CP01138E
Deng, 2019, Facile one-step carbothermal reduction synthesis of Na3V2(PO4)2F3/C serving as cathode for sodium ion batteries, Electrochim. Acta, 298, 459, 10.1016/j.electacta.2018.12.131
Zhang, 2015, Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries, Small, 11, 3822, 10.1002/smll.201500783
López, 2015, High performance full sodium-ion cell based on a nanostructured transition metal oxide as negative electrode, Chem, 21, 14879, 10.1002/chem.201502050
Wang, 2015, A type of sodium-ion full-cell with layered NaNi0.5Ti0.5O2 cathode and pre-sodiated hard carbon anode, RSC Adv., 5, 106519, 10.1039/C5RA21235A
Barpanda, 2014, 3.8-V earth-abundant sodium battery electrode, Nat. Commun., 5, 4358, 10.1038/ncomms5358
Guo, 2015, High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2, Energy Environ. Sci., 8, 1237, 10.1039/C4EE03361B
Wang, 2015, P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries, Nat. Commun., 6, 6954, 10.1038/ncomms7954
Hartung, 2014, Sodium vanadium oxide: a new material for high-performance symmetric sodium-ion batteries, ChemPhysChem, 15, 2121, 10.1002/cphc.201402020