Crystallization behavior of ion beam sputtered HfO2 thin films and its effect on the laser-induced damage threshold
Tóm tắt
In this work, we present our results about the thermal crystallization of ion beam sputtered hafnia on 0001 SiO2 substrates and its effect on the laser-induced damage threshold (LIDT). The crystallization process was studied using in-situ X-ray diffractometry. We determined an activation energy for crystallization of 2.6 ± 0.5 eV. It was found that the growth of the crystallites follows a two-dimensional growth mode. This, in combination with the high activation energy, leads to an apparent layer thickness-dependent crystallization temperature. LIDT measurements @355 nm on thermally treated 3 quarter-wave thick hafnia layers show a decrement of the 0% LIDT for 1 h @773 K treatment. Thermal treatment for 5 h leads to a significant increment of the LIDT values.
Tài liệu tham khảo
Kaiser, N., Pulker, H.K.: Optical Interference Coatings. Springer Verlag, Berlin (2003)
Ristau, D.: Laser-Induced Damage in Optical Materials. CRC Press, Boca Raton, FL (USA), 2015 ISBN: 978-1-4398-7217-8
Langdon, B., Patel, D., Krous, E., Rocca, J.J., Menoni, C.S., Tomasel, F., Kholi, S., McCurdy, P.R., Langston, P., Ogloza, A.: Influence of process conditions on the optical properties of HfO2/SiO2 coatings for high-power laser coatings. Proc. SPIE. 6720, 67200X (2007). https://doi.org/10.1117/12.753027
Rempe, G., Thompson, R.J., Kimble, H.J., Lalezari, R.: Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363 (1992). https://doi.org/10.1364/OL.17.000363
Alvisi, M., Di Giulio, M., Marrone, S.G., Perrone, M.R., Protopapa, M.L., Valentini, A., Vasanelli, L.: HfO2 films with high laser damage threshold. Thin Solid Films. 358, 250 (2000). https://doi.org/10.1016/S0040-6090(99)00690-2
Akhtar, S.M.J., Ristau, D., Ebert, J., Welling, H.: High damage threshold single and double layer antireflection (AR) coating for Nd:YAG Laser: conventional systems. J. Optoelectron. Adv. Mater. 9, 2391 (2007)
Stolz, C.J., Thomas, M.D., Griffin, A.J.: BDS thin film damage competition. Proc. SPIE. 7132, 71320C (2008). https://doi.org/10.1117/12.806287
Miller, J., Barsotti, L., Vitale, S., Fritschel, P., Evans, M., Sigg, D.: Prospects for doubling the range of Advanced LIGO. Phys. Rev. D. 91, 062005 (2015). https://doi.org/10.1103/PhysRevD.91.062005
Steinlechner, J.: Development of mirror coatings for gravitational wave detectors. Philos. Trans. R. Soc. A. 376, 0282 (2018). https://doi.org/10.1098/rsta.2017.0282
Jiang, Y.Y., Ludlow, A.D., Lemke, N.D., Fox, R.W., Sherman, J.A., Ma, L.S., Oates, C.W.: Making optical atomic clocks more stable with 10-16-level laser stabilization. Nat. Photonics. 5, 158 (2011). https://doi.org/10.1038/nphoton.2010.313
Harry, G., Bodiya, T., DeSalvo, R.: Optical Coatings and Thermal Noise in Precision Measurement. Cambridge University Press, Cambridge (UK), (2012) ISBN: 9781107003385
Aso, Y., Michimura, Y., Somiga, K., Ando, M., Miyakawa, O., Sekiguchi, T., Tatsumi, D., Yamamoto, H.: Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D. 88, 043007 (2013). https://doi.org/10.1103/PhysRevD.88.043007
Cole, G.D., Zhang, W., Martin, M.J., Ye, J., Aspelmeyer, M.: Tenfold reduction of Brownian noise in high-reflective optical coatings. Nat. Photonics. 7, 644 (2013). https://doi.org/10.1038/nphoton.2013.174
Cole, G.D., Zhang, W., Bjork, B.J., Follman, D., Heu, P., Deutsch, C., Sonderhouse, L., Robinson, J., Franz, C., Alexandrovski, A., Notcutt, M., Heckl, O.H., Ye, J., Aspelmeyer, M.: High performance near and mid-infrared crystalline coatings. Optica. 3, 647 (2016). https://doi.org/10.1364/OPTICA.3.000647
Marchiò, M., Flaminio, R., Pinard, L., Forest, D., Deutsch, C., Heu, P., Follman, D., Cole, G.D.: Optical performance of large area crystalline coatings. Opt. Express. 5, 6117 (2018). https://doi.org/10.1364/OE.26.006114
He, G., Liu, M., Zhu, L.Q., Chang, M., Fang, Q., Zhang, L.D.: Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100). Surf. Sci. 576, 67 (2005). https://doi.org/10.1016/j.susc.2004.11.042
Xie, Y., Ma, Z., Su, Y., Liu, Y., Liu, L., Zhao, H., Zhou, J., Zhang, Z., Li, J., Xie, E.: The influence of mixed phases on optical properties of HfO2 thin films prepared by thermal oxidation. J. Mater. Res. 26, 50 (2011). https://doi.org/10.1557/jmr.2010.61
Rammula, R., Aarik, J., Mänder, H., Ritslaid, P., Sammelselg, V.: Atomic layer deposition of HfO2: effect of structure development on growth rate, morphology and optical properties of thin films. Appl. Surf. Sci. 257, 1043 (2010). https://doi.org/10.1016/j.apsusc.2010.07.105
Wei, Y., Xu, Q., Wang, Z., Liu, Z., Pan, F., Zhang, Q., Wang, J.: Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition. J. Alloys Cmpd. 738, 1422 (2018). https://doi.org/10.1016/j.jallcom.2017.11.222
Nie, X., Ma, F., Ma, D.: Thermodynamics and kinetic behaviors of thickness-dependent crystallization in high-k thin films deposited by atomic layer deposition. J. Vacuum Sci. Technol. A. 33, 01A140 (2015). https://doi.org/10.1116/1.4903946
Biswas, D., Singh, M.N., Sinha, A.K., Bhattacharyya, S., Chakraborty, S.: Effect of excess hafnium on HfO2 crystallization temperature and leakage current behavior of HfO2/Si metal-oxide semiconductor devices. J. Vacuum Sci. Tecnol. B. 34, 022201 (2016). https://doi.org/10.1116/1.4941247
Kim, D.H., Park, J.W., Chang, Y.M., Lim, D., Chung, H.: Electrical properties and structure of laser-spike-annealed hafnium oxide. Thin Solid Films. 518, 2812 (2010). https://doi.org/10.1016/j.tsf.2009.08.039
Liu, H., Jiang, Y., Wang, L., Li, S., Yang, X., Jiang, C., Liu, D., Ji, Y., Zhang, F., Chen, D.: Effect of heat tretament on properties of HfO2 film deposited by ion beam sputtering. Opt. Mater. 73, 95 (2017). https://doi.org/10.1016/j.optmat.2017.07.048
Abromavicius, G., Kicas, S., Buzelis, R.: High temperature annealing effects on spectral, microstructural and laser damage resistance properties of sputtered HfO2 and HfO2-SiO2 mixture-based UV mirrors. Opt. Mater. 95, 109245 (2019). https://doi.org/10.1016/j.optmat.2019.109245
Avrami, M.: Kinetics of phase change. I general theory. J. Chem. Phys. 7, 1103 (1939)
Gischkat, T., Schachtler, D., Balogh-Michels, Z., Botha, R., Mocker, A., Eiermann, B., Günther, S.: Influence of ultra-sonic frequency during substrate cleaning on the laser resistance of antireflection coatings. In: Proc. SPIE 11173, Laser-Induced Damage in Optical Materials, p. 1117317 (2019). https://doi.org/10.1117/12.2536442
ISO 21254-1:2011. International Organization for Standardization, Geneva.https://www.iso.org/standard/43001.html. Accessed 12 Nov 2018.
Jensen, L., Mrohs, M., Gyamfi, M., Mäderbach, H., Ristau, D.: Higher certainty of the laser-induced damage threshold testwith a redistributing data treatment. Rev. Sci. Instrum. 86, 103106 (2015). https://doi.org/10.1063/1.4932617
Vos, M., Grande, P.L., Venkataalam, D.K., Nandi, S.K., Elliman, R.G.: Oxygen self-diffusion in HfO2 studied by electron spectrography. Phys. Rev. Lett. 112, 175901 (2014). https://doi.org/10.1103/PhysRevLett.112.175901
Capron, N.: Migration of oxygen vacancy in HfO2 and across the HfO2/SiO2 interface: a first principle investigation. Appl. Phys. Lett. 91, 192905 (2007). https://doi.org/10.1063/1.2807282
Shen, W., Kumari, N., Gibson, G., Jeon, Y., Henze, D., Silverthorn, S., Bash, C., Kumar, S.: Effect of annealing on structural changes and oxygen diffusion in amoprhous HfO2 using classical molecular dynamics. J. Appl. Phys. 123, 085113 (2018). https://doi.org/10.1063/1.5009439
Swaroop, S., Kilo, M., Argirusis, C., Borchardt, G., Chokshi, A.H.: Lattice and grain boundary diffusion of cations in 3YTZ analyzed using SIMS. Acta Mater. 53, 4975 (2005). https://doi.org/10.1016/j.actamat.2005.05.031
González-Romero, R.L., Meléndez, J.J., Gómez-García, D., Cumbrera, F.L., Domínguez-Rodríguez, A., Wakai, F.: Cation diffusion in yttria-zirconia by molecular dynamics. Solid State Ion. 204-205, 1 (2011). https://doi.org/10.1016/j.ssi.2011.10.006
Dong, Y., Qi, L., Li, J., Chen, I.W.: A computational study of yttria-stabilized zirconia: II. Cation diffusion. Acta Mater. 126, 438 (2017)
Suárez, G., Garrido, L.B., Aglietti, E.F.: Sintering kinetics of 8Y–cubic zirconia: Cation diffusion coefficient. Mater. Chem. Phys. 110, 370 (2008). https://doi.org/10.1016/j.matchemphys.2008.02.021
Yao, J.K., Shao, H.D., He, H.B., Fan, Z.X.: Effects of annealing on laser-induced damage threshold of TiO2/SiO2 high reflectors. Appl. Surf. Sci. 253, 8911–8914 (2007). https://doi.org/10.1016/j.apsusc.2007.05.005
Tan, T., Liu, Z., Lu, H., Liu, W., Tian, H.: Structure and optical properties of HfO2 thin films on silicon after rapid thermal annealing. Opt. Mater. 32, 432–435 (2010). https://doi.org/10.1016/j.optmat.2009.10.003
Borzi, A., Dolabella, S., Szmyt, W., Geler-Kremer, J., Abel, S., Fompeyrine, J., Hoffmann, P., Neels, A.: Microstructure analysis of epitaxial BaTiO3 thin films on SrTiO3-buffered Si: Strain and dislocation density quantification using HRXRD methods. Materialia. 14, 100953 (2020). https://doi.org/10.1016/j.mtla.2020.100953
Stevanovic, I., Balogh-Michels, Z., Bächli, A., Wittwer, V.J., Südmeyer, T., Stuck, A., Gischkat, T.: Influence of the secondary ion beam source on the laser damage mechanism and stress evolution of IBS hafnia layers. Appl. Sci. 11/1, 189 (2021). https://doi.org/10.3390/app11010189
Tateno, R., Okada, H., Otobe, T., Kawase, K., Koga, J.K., Kosuge, A., Nagashima, K., Sugiyama, A., Kashiwagi, K.: Negative effect of crystallization on the mechanism of laser damage in a HfO2/SiO2 multilayer. J. Appl. Phys. 112, 123103 (2012). https://doi.org/10.1063/1.4767231