Hành Vi Đông Kết của Poli (Axit Lactic) Được Chỉnh Sửa Bằng ST-NAB3 và Tính Chất Cơ Học cũng như Nhiệt Độ Được Cải Thiện

Journal of Polymers and the Environment - Tập 31 - Trang 5166-5184 - 2023
Dongxing Dun1, Yu’an Bai1, Longzhen Wang1, Bo Xu1, Hongfu Zhou1, Xiangdong Wang1
1Key Laboratory of Processing and Application of Polymeric Foams of China National Light Industry Council, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China

Tóm tắt

Poli (axit lactic) (PLA) có khả năng phân hủy sinh học, được xem là một sự thay thế tuyệt vời cho nhựa gốc dầu mỏ, đã được sử dụng rộng rãi để giảm ô nhiễm môi trường do phát thải khí nhà kính. Tuy nhiên, phạm vi ứng dụng thực tế của PLA bị hạn chế do tính kết tinh kém, cùng với các tính chất cơ học và khả năng chịu nhiệt không tốt. Trong bối cảnh này, một tác nhân nhân nucleation không đồng nhất (HNA) đã được đưa vào ma trận PLA để giải quyết các vấn đề đã nêu. Các tác động của HNA lên động học kết tinh của PLA đã được khảo sát bằng phương pháp Avrami. Động học kết tinh làothermal và không làothermal của các hệ thống PLA/HNA chứa các hàm lượng HNA khác nhau (0–0.75 wt.%) đã chứng minh rằng HNA có thể tạo ra hiện tượng nucleation không đồng nhất trong ma trận PLA và cải thiện đáng kể tốc độ kết tinh của nó. Thời gian t1/2 của hợp chất PLA/HNA-0.75 đã giảm xuống còn 2.35 phút so với 34.12 phút đối với PLA nguyên chất tại nhiệt độ làothermal 135 °C. Độ kết tinh của hợp chất PLA/HNA-0.75 được cải thiện lên 42.1% so với PLA nguyên chất. Cấu trúc “shish-kebab” của các hợp chất PLA/HNA chứa các hàm lượng HNA khác nhau (0.25–0.75 wt.%) đã được quan sát bằng kính hiển vi quang học phân cực khi nồng độ HNA vượt quá 0.375 wt.%. Hợp chất PLA/HNA-0.75 có sức bền va đập không răng (33.6 kJ/m2), sức bền va đập có răng (4.3 kJ/m2) và nhiệt độ biến dạng nhiệt (73.2 °C) cao nhất. Nhìn chung, một phương pháp khả thi đã được đề xuất để chế tạo PLA với các đặc tính cơ học và chịu nhiệt tuyệt vời thông qua công trình này.

Từ khóa

#PLA #HNA #đông kết #cơ học #nhiệt độ

Tài liệu tham khảo

Feng T, Li R, Zhang H, Gong X, Yang Y (2021) Induction mechanism and optimization of tradable green certificates and carbon emission trading acting on electricity market in China. Resour Conserv Recycl 169:105487. https://doi.org/10.1016/j.resconrec.2021.105487 Liao Q, Peng X, Fang H, Turng LS, Huang A (2020) Fabrication of poly(lactic acid)/silkworm excrement composite with enhanced crystallization, toughness and biodegradation properties. J Polym Environ 28:295–303. https://doi.org/10.1007/s10924-019-01595-9 Chen M, Ma M, Lin Y, Ma Z, Li K (2022) Carbon Kuznets curve in China’s building operations: retrospective and prospective trajectories. Sci Total Environ 803:150104. https://doi.org/10.1016/j.scitotenv.2021.150104 Luo J, Sun W, Zhou H, Zhang Y, Wen B, Xin C (2021) Bioderived and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites based on carbon nanotubes: microstructure observation and EMI shielding property improvement. ACS Sustain Chem Eng 9:10785–10798. https://doi.org/10.1021/acssuschemeng.1c02064 Guo J, Huang X, Xiang L, Wang Y, Li Y, Li H (2020) Source, migration and toxicology of microplastics in soil. Environ Int 137:105263. https://doi.org/10.1016/j.envint.2019.105263 Cui W, Wei X, Luo J, Xu B, Zhou H, Wang X (2022) CO2-assisted fabrication of PLA foams with exceptional compressive property and heat resistance via introducing well-dispersed stereocomplex crystallites. J CO2 Util 64:102184. https://doi.org/10.1016/j.jcou.2022.102184 Li Y, Mi J, Fu H, Zhou H, Wang X (2019) Nanocellular foaming behaviors of chain-extended poly(lactic acid) induced by isothermal crystallization. ACS Omega 4:12512–12523. https://doi.org/10.1021/acsomega.9b01620 Li Y, Zhou H, Wen B, Chen Y, Wang X (2020) A facile and efficient method for preparing chain extended poly(lactic acid) foams with high volume expansion ratio. J Polym Environ 28:17–31. https://doi.org/10.1007/s10924-019-01572-2 Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091–3101. https://doi.org/10.1021/am3004522 Li B, Zhao G, Wang G, Zhang L, Gong J, Shi Z (2021) Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption. Sep Purif Technol 257:117949. https://doi.org/10.1016/j.seppur.2020.117949 Liu T, Lian X, Li L, Peng X, Kuang T (2020) Facile fabrication of fully biodegradable and biorenewable poly (lactic acid)/poly (butylene adipate-co-terephthalate) in-situ nanofibrillar composites with high strength, good toughness and excellent heat resistance. Polym Degrad Stab 171:109044. https://doi.org/10.1016/j.polymdegradstab.2019.109044 Cao Y, Jiang J, Jiang Y, Li Z, Hou J, Li Q (2022) Biodegradable highly porous interconnected poly(epsilon-caprolactone)/poly(L-lactide-co-epsilon-caprolactone) scaffolds by supercritical foaming for small-diameter vascular tissue engineering. Polym Adv Technol 33:440–451. https://doi.org/10.1002/pat.5528 Qiao Y, Li Q, Jalali A, Yang J, Wang X, Jiang J (2021) In-situmicrofibrillated poly(epsilon-caprolactone)/poly(lacticacid) composites with enhanced rheological properties, crystallization kinetics and foaming ability. Compos B 208:108594. https://doi.org/10.1016/j.compositesb.2020.108594 Wu F, Lan X, Ji D, Liu Z, Yang W, Yang M (2013) Grafting polymerization of polylactic acid on the surface of nano-SiO2 and properties of PLA/PLA-Grafted-SiO2 nanocomposites. J Appl Polym Sci 129:3019–3027. https://doi.org/10.1002/app.38585 Quynh TM, Mitomo H, Zhao L, Tamada M (2008) Properties of a poly(L-lactic acid)/poly(D-lactic acid) stereocomplex and the stereocomplex crosslinked with triallyl isocyanurate by irradiation. J Appl Polym Sci 110:2358–2365. https://doi.org/10.1002/app.28269 Hao Y, Tian H, Chen J, Chen Q, Zhang W, Liu W, Liu Y (2022) Roles of physical filling and chemical crosslinking on the physico-mechanical properties of polylactic acid. J Appl Polym Sci 139:e52808. https://doi.org/10.1002/app.52808 Wang G, Zhao G, Wang S, Zhang L, Park CB (2018) Injection molded microcellular PLA/graphite nanocomposite with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J Mater Chem C 6:6847–6859. https://doi.org/10.1039/c8tc01326h Kuang T, Ju J, Liu T, Hejna A, Saeb M, Zhang S (2022) A facile structural manipulation strategy to prepare ultra-strong, super-tough, and thermally stable polylactide/nucleating agent composites. Adv Compos Hybrid Mater 5:948–959. https://doi.org/10.1007/s42114-021-00390-2 Wang X, Gao Y, Li X, Xu Y, Jiang J, Hou J (2017) Selective localization of graphene oxide in electrospun polylactic acid/poly(ε-caprolactone) blended nanofibers. Polym Test 59:396–403. https://doi.org/10.1016/j.polymertesting.2017.02.022 Kuang T, Ju J, Chen F, Liu X, Zhang S, Liu T (2022) Coupled effect of self-assembled nucleating agent, Ni-CNTs and pressure-driven flow on the electrical, electromagnetic interference shielding and thermal conductive properties of poly (lactic acid) composite foams. Compos Sci Technol 230:109736. https://doi.org/10.1016/j.compscitech.2022.109736 Natphichon B, Suwan A, Weerasak L (2017) The Compatibility of polylactides and polybutylene succinate in PLA blends based on thermal, mechanical, and rheological properties. Orient J Chem 33:2766–2775. https://doi.org/10.13005/ojc/330609 Meng X, Shi G, Chen W, Wu C, Xin Z, Han T, Shi Y (2015) Structure effect of phosphite on the chain extension in PLA. Polym Degrad Stab 120:283–289. https://doi.org/10.1016/j.polymdegradstab.2015.07.019 Choochottiros C (2022) Thermal crosslinking of polylactide/star-shaped polycaprolactone for toughening and resistance to thermal deformation. Polym J 54:83–90. https://doi.org/10.1038/s41428-021-00565-0 Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79. https://doi.org/10.1016/j.polymertesting.2014.03.002 Tao Y, Wang H, Li Z, Li P, Shi S (2017) Development and application of wood flour-filled polylactic acid composite filament for 3D printing. Materials 10:339. https://doi.org/10.3390/ma10040339 Lee JH, Jeong YG (2011) Preparation and crystallization behavior of polylactide nanocomposites reinforced with POSS-modified montmorillonite. Fibers Polym 12:180–189. https://doi.org/10.1007/s12221-011-0180-7 Yang B, Wang D, Chen F, Su L-F, Miao J-B, Chen P (2019) Melting and crystallization behaviors of poly(lactic acid) modified with graphene acting as a nucleating agent. J Macromol Sci Part B Phys 58:290–304. https://doi.org/10.1080/00222348.2018.1564222 Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M (2019) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 58:290–304. https://doi.org/10.1016/j.polymer.2005.12.066 Chen P, Zhou H, Liu W, Zhang M, Du Z, Wang X (2015) The synergistic effect of zinc oxide and phenylphosphonic acid zinc salt on the crystallization behavior of poly (lactic acid). Polym Degrad Stab 122:25–35. https://doi.org/10.1016/j.polymdegradstab.2015.10.014 Shi K, Liu G, Sun H, Yang B, Weng Y (2022) Effect of biomass as nucleating agents on crystallization behavior of polylactic acid. Polymers 14:4305. https://doi.org/10.3390/polym14204305 Ema Y, Ikeya M, Okamoto M (2006) Foam processing and cellular structure of polylactide-based nanocomposites. Polymer 47:5350–5359. https://doi.org/10.1016/j.polymer.2006.05.050 Zhang X, Shi J, Zhou J, Nan J (2021) Nucleation effect of cellulose nanocrystals/polybutylene succinate composite filler on polylactic acid/polybutylene succinate blends. Polym Bull 79:5481–5494. https://doi.org/10.1007/s00289-021-03567-3 Petchwattana N, Covavisaruch S, Petthai S (2014) Influence of talc particle size and content on crystallization behavior, mechanical properties and morphology of poly(lactic acid). Polym Bull 71:1947–1959. https://doi.org/10.1007/s00289-014-1165-7 Yin D, Mi J, Zhou H, Wang X, Yu K (2020) Simple and feasible strategy to fabricate microcellular poly(butylene succinate) foams by chain extension and isothermal crystallization induction. J Appl Polym Sci 137:48850. https://doi.org/10.1002/app.48850 Tang Y, Wang Y, Chen S, Wang X (2022) Fabrication of low-density poly(lactic acid) microcellular foam by self-assembly crystallization nucleating agent. Polym Degrad Stab 198:109891. https://doi.org/10.1016/j.polymdegradstab.2022.109891 Kuang T, Ju J, Chen F, Liu X, Zhang S, Liu T (2022) Coupled effect of self-assembled nucleating agent, Ni–CNTs and pressure-driven flow on the electrical, electromagnetic interference shielding and thermal conductive properties of poly (lactic acid) composite foams. Compos Sci Technol 230:109736. https://doi.org/10.1016/j.compscitech.2022.109736 Feng Y, Ma P, Xu P, Wang R, Dong W, Chen M (2018) The crystallization behavior of poly(lactic acid) with different types of nucleating agents. Int J Biol Macromol 106:955–962. https://doi.org/10.1016/j.ijbiomac.2017.08.095 Shi X, Zhang G, Liu Y, Ma Z, Jing Z, Fan X (2016) Microcellular foaming of polylactide and poly(butylene adipate-co-terphathalate) blends and their CaCO3 reinforced nanocomposites using supercritical carbon dioxide. Polym Adv Technol 27:550–560. https://doi.org/10.1002/pat.3768 Zhang X, Li W, Ye B, Lin Z, Rong J (2011) Studies on confined crystallization behavior of nanobiocomposites consisting of acetylated bacterial cellulose and poly (lactic acid). J Thermoplast Compos Mater 26:346–361. https://doi.org/10.1177/0892705711424922 Wang L, Lee R, Wang G, Chu RKM, Zhao J, Park CB (2017) Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic Acid) foams for green packaging. Chem Eng J 327:1151–1162. https://doi.org/10.1016/j.cej.2017.07.024 Phetwarotai W, Tanrattanakul V, Phusunti N (2016) Mechanical characteristics and thermal behaviours of polylactide blend films: influence of nucleating agent and poly(butylenes adipate-co-terephthalate). Plast Rubber Compos 45:333–345. https://doi.org/10.1080/14658011.2016.1197556 Refaa Z, Boutaous M, Rousset F, Fulchiron R, Zinet M, Xin S (2014) Crystallization kinetics of poly-(lactic acid) with and without talc: optical microscopy and calorimetric analysis. AIP Conf Proc 1593:342–346. https://doi.org/10.1063/1.4873796 Silva IDD, Schafer H, Jaques NG, Siqueira DD, Ries A, Morais DDD (2020) An investigation of PLA/Babassu cold crystallization kinetics. J Therm Anal Calorim 141:1389–1397. https://doi.org/10.1007/s10973-019-09062-2 Taib RM, Tham CY (2017) Isothermal crystallization kinetics and spherulite morphologies of poly(lactic acid)/ethylene acrylate copolymer blends. J Appl Polym Sci 134:45487. https://doi.org/10.1002/app.45487 Refaa Z, Boutaous M, Xin S, Siginer DA (2017) Thermophysical analysis and modeling of the crystallization and melting behavior of PLA with talc. J Therm Anal Calorim 128:687–698. https://doi.org/10.1007/s10973-016-5961-1 Liu Q, Zhang H, Zhu M, Dong Z, Wu C (2013) Blends of polylactide/thermoplactic elastomer: miscibility, physical aging and crystallization behaviors. Fibers Polym 14:1688–1698. https://doi.org/10.1007/s12221-013-1688-9 Zhang X, Wang X (2018) Effect of carboxylic acid nucleating agent on crystallization and mechanical properties of PLA/PBS blends. Polym Sci Ser A 60:332–341. https://doi.org/10.1134/S0965545X18030185 Xu N, Wang X, Pan L, Pang S, Chen X, Yang S (2014) Isothermal crystallization behavior and kinetics of poly(lactic acid) filled with a novel nucleating agent. Adv Mater Res 888:716. https://doi.org/10.4028/www.scientific.net/AMR.887-888.716 El-Taweel SH, Abboudi M (2020) Nonisothermal crystallization kinetics of PLA/nanosized YVO4 composites as a novel nucleating agent. J Appl Polym Sci 137(5):48340. https://doi.org/10.1002/app.48340 Shi N, Dou Q (2015) Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim 119:635–642. https://doi.org/10.1007/s10973-014-4162-z Bai Z, Dou Q (2016) Non-isothermal crystallization kinetics of polypropylene/poly (lactic acid)/maleic anhydride-grafted polypropylene blends. J Therm Anal Calorim 126:785–794. https://doi.org/10.1007/s10973-016-5554-z Ke T, Sun X (2003) Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J Appl Polym Sci 89:1203–1210. https://doi.org/10.1002/app.12162 Li C, Dou Q, Bai Z, Lu Q (2015) Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J Therm Anal Calorim 122:407–417. https://doi.org/10.1007/s10973-015-4677-y Ertas M, Altuntas E, Donmez Cavdar A (2019) Effects of halloysite nanotube on the performance of natural fiber filled poly(lactic acid) composites. Polym Compos 40:4238–4247. https://doi.org/10.1002/pc.25284 Liang S, Wang K, Yang H, Zhang Q, Du R, Fu Q (2006) Crystal morphology and tensile properties of LLDPE containing PP fifibers as obtained via dynamic packing injection molding. Polymer 47:7115–7122. https://doi.org/10.1016/j.polymer.2006.08.021 Kuang T, Zhang M, Lian X, Zhang J, Liu T, Zhang S (2022) External flow-induced highly oriented and dense nanohybrid shish-kebabs: a strategy for achieving high performance in poly (lactic acid) composites. Comp Comm 29:101042. https://doi.org/10.1016/j.coco.2021.101042 Bai H, Huan C, Xiu H, Zhang Q, Fu Q (2014) Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer 55:6924–6934. https://doi.org/10.1016/j.polymer.2014.10.059 Wang Y, Mi J, Du Z, Chen S, Zhang C, Wang X (2021) Peculiar micro and nano cell morphology of PBT/PTFE nanofibrillated composite foams of supercritical CO2 foaming induced by in-situ formed 3D PTFE nanofiber networks. Polymer 232:124165. https://doi.org/10.1016/j.polymer.2021.124165 Han L, Han C, Dong L (2013) Morphology and properties of the biosourced poly(lactic acid)/poly(ethylene oxide-b-amide-12) blends. Polym Compos 34:122–130. https://doi.org/10.1002/pc.22383 Baba BO, Ozmen U (2017) Preparation and mechanical characterization of chicken feather/PLA composites. Polym Compos 38:837–845. https://doi.org/10.1002/pc.23644 Erpek CEY, Ozkoc G, Yilmazer U (2017) Comparison of natural halloysite with synthetic carbon nanotubes in poly(lactic acid) based composites. Polym Compos 38:2337–2346. https://doi.org/10.1002/pc.23816 Li J, Chen D, Gui B, Gu M, Ren J (2010) Crystallization morphology and crystallization kinetics of poly(lactic acid): effect of N-aminophthalimide as nucleating agent. Polym Bull 67:775–791. https://doi.org/10.1007/s00289-010-0419-2 Chuayjuljit S, Wongwaiwattanakul C, Chaiwutthinan P, Prasassarakich P (2017) Biodegradable poly(lactic acid)/poly(butylene succinate)/wood flour composites: physical and morphological properties. Polym Compos 38:2841–2851. https://doi.org/10.1002/pc.23886 Suksut B, Deeprasertkul C (2010) Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber. J Polym Environ 19:288–296. https://doi.org/10.1007/s10924-010-0278-9 Phetwarotai W, Aht-Ong D (2016) Nucleated polylactide blend films with nanoprecipitated calcium carbonate and talc. J Therm Anal Calorim 127:2367–2381. https://doi.org/10.1007/s10973-016-5802-2 Lee H, Chin IJ (2016) Toughening effect of annealing-induced intermolecular crystallization of PBA-g-PLLA in PLA matrix. Macromol Res 24:515–521. https://doi.org/10.1007/s13233-016-4071-z Liu P, Zhen W, Bian S, Wang X (2018) Preparation and performance of poly (lactic acid)/fulvic acid benzhydrazide composites. Adv Polym Technol 37:2788–2798. https://doi.org/10.1002/adv.21951 Zhang H, Zhen W (2019) Performance, rheological behavior and enzymatic degradation of poly (lactic acid)/modifified fulvic acid composites. Int J Biol Macromol 139:181–190. https://doi.org/10.1016/j.ijbiomac.2019.07.192 Lin Y, Zhang K, Dong Z, Dong L, Li Y (2007) Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 40:6257–6267. https://doi.org/10.1021/ma070989a Xu X, Zhen W (2018) Preparation, performance and non-isothermal crystallization kinetics of poly(lactic acid)/amidated humic acid composites. Polym Bull 75:3753–3780. https://doi.org/10.1007/s00289-017-2233-6 Tang Z, Zhang C, Liu X, Zhu J (2012) The crystallization behavior and mechanical properties of polylactic acid in the presence of a crystal nucleating agent. J Appl Polym Sci 125:1108–1115. https://doi.org/10.1002/app.34799 Wang L, Wang Y, Huang Z, Weng Y (2015) Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites. Mater Des 66:7–15. https://doi.org/10.1016/j.matdes.2014.10.011 Su R, Zhang Z, Gao X, Ge Y, Wang K, Fu Q (2010) Polypropylene injection molded part with novel macroscopic bamboo-like bionic structure. J Phys Chem B 114:9994–10001. https://doi.org/10.1021/jp1020802 Ji H, Zhou X, Chen X, Zhao H, Wang Y, Zhu H (2020) Deformation-induced crystallization behavior of isotactic polypropylene sheets containing a β-nucleating agent under solid-state stretching. Polymers 12:1258. https://doi.org/10.3390/polym12061258 Mi D, Hou F, Zhou M, Zhang J (2018) Improving the mechanical and thermal properties of shish-kebab via partial melting and re-crystallization. Eur Polym J 101:1–11. https://doi.org/10.1016/j.eurpolymj.2018.01.032 Chen Y, Dou Q (2012) Crystallization properties of nucleated poly(lactic acid). Adv Mater Res 549:322–326. https://doi.org/10.4028/www.scientific.net/AMR.549.322