Sự đóng góp của kích thước tinh thể và ứng suất nội tại trong việc dịch chuyển năng lượng băng tần của các phim mỏng CZTS cấu trúc nano phun siêu âm

Applied Physics A Solids and Surfaces - Tập 126 - Trang 1-8 - 2020
M. Khammar1, F. Ynineb2, S. Guitouni3, Y. Bouznit4, N. Attaf3
1Development Center of Advanced Technologies (CDTA), Research Unit in Optics and Photonics, Sétif 1 University, El Bez, Algeria
2Research Center on Semiconductors Technology for Energetic, Algiers, Algeria
3Material Sciences and Applications Research Unit, Physics Department, Constantine 1 University, Constantine, Algeria
4Faculty of Science, Department of Chemistry, M’sila University, M’sila, Algeria

Tóm tắt

Ảnh hưởng của kích thước tinh thể và ứng suất nội tại đối với sự dịch chuyển năng lượng băng tần của các phim Cu2ZnSnS4 được phun siêu âm đã được thảo luận. Các phim đã được lắng đọng trên các nền kính dưới các nhiệt độ khác nhau, cụ thể là 280, 320, 360 và 400 °C. Phân tích nhiễu xạ tia X đã tiết lộ sự hiện diện của pha đơn kesterite với định hướng ưu tiên dọc theo mặt phẳng (112). Năng lượng băng tần giảm từ 1.84 xuống 1.51 eV khi nhiệt độ nền tăng, trong khi kích thước tinh thể tăng từ 5.92 tới 21 nm, cùng với sự thư giãn của ứng suất nội tại từ 6.82 × 10−3 lines−2 m−4 xuống 2.11 × 10−3 lines−2 m−4. Một hành vi đồng thời giữa kích thước tinh thể và ảnh hưởng của ứng suất nội tại lên sự dịch chuyển băng tần đã được ghi nhận. Ảnh hưởng của ứng suất nội tại là chiếm ưu thế ở nhiệt độ nền cao trong khi kích thước tinh thể chiếm ưu thế ở nhiệt độ thấp do sự hiện diện của sự giam giữ lượng tử mạnh.

Từ khóa

#kích thước tinh thể #ứng suất nội tại #băng tần #phim CZTS #phun siêu âm

Tài liệu tham khảo

L. Rovelli, S.D. Tilley, K. Sivula, Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. ACS Appl. Mater. Interfaces 5, 8018–8024 (2013) D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421–1436 (2011) S. Siebentritt, S. Schorr, Kesterites: a challenging material for solar cells. Prog. Photovolt. Res. Appl. 20, 512–519 (2012) S.W. Shin, J.H. Han, C.Y. Park, A.V. Moholkar, J.Y. Lee, J.H. Kim, Quaternary Cu2ZnSnS4 nanocrystals: facile and low cost synthesis by microwave-assisted solution method. J. Alloy. Compd. 516, 96–101 (2012) D.M. Berg, M. Arasimowicz, R. Djemour, L. Gutay, S. Siebentritt, S. Schorr, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodriguez, P.J. Dale, Discrimination and detection limits of secondary phases in Cu2ZnSnS4 using X-ray diffraction and Raman spectroscopy. Thin Solid Films 569, 113–123 (2014) M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells. Energy Environ. Sci. 8, 3134–3159 (2015) J. Krustok, R. Josepson, M. Danilson, D. Meissner, Temperature dependence of Cu2ZnSn(SexS1−x)4 monograin solar cells. Sol. Energy 84, 379–383 (2010) J. Han, S.W. Shin, M.G. Gang, J.H. Kim, J.Y. Lee, Crystallization behaviour of co-sputtered Cu2ZnSnS4 precursor prepared by sequential sulfurization processes. Nanotechnology 24, 095706 (2013) A. Santoni, F. Biccari, C. Malerba, M. Valentini, R. Chierchia, A. Mittiga, Valence band offset at the CdS/Cu2ZnSnS4 interface probed by X-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 46, 175101 (2013) T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, H. Ogawa, Fabrication of Cu2ZnSnS4 thin films by co-evaporation. Phys. Stat. Sol. (c) 3, 2844–2847 (2006) A.V. Moholkar, S.S. Shinde, A.R. Babar, K.U. Sim, Y.B. Kwon, K.Y. Rajpure, J.H. Kim, Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate. Sol. Energy 85, 1354–1363 (2011) K. Moriya, J. Watabe, K. Tanaka, H. Uchiki, Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition. Phys. Stat. Sol. (e) 3, 2848–2852 (2006) K. Tanaka, N. Moritake, H. Uchiki, Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors. Sol. Energy Mater. Sol. Cells 91, 1199–1201 (2007) S. Huang, W. Luo, Z. Zou, Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by ultrasonic spray pyrolysis method. J. Phys. D: Appl. Phys. 46, 235108 (2013) F. Ynineb, N. Attaf, M.S. Aida, J. Bougdira, Y. Bouznit, H. Rinnert, Morphological and optoelectrical study of ZnO:In/p-Si heterojunction prepared by ultrasonic spray pyrolysis. Thin Solid Films 628, 36–42 (2017) M.A. Majeed Khan, S. Kumar, M. Alhoshan, A.S. Al Dwayyan, Spray pyrolysed Cu2ZnSnS4 absorbing layer: a potential candidate for photovoltaic applications. Opt. Laser Technol. 49, 196–201 (2013) M.Z. Ansari, S. Munjal, N. Khare, Intrinsic strain dependent redshift in optical band gap of Cu2ZnSnS4 nanostructured thin films. Thin Solid Films 657, 95–100 (2018) H. Nishi, T. Nagano, S. Kuwabata, T. Torimoto, Controllable electronic energy structure of size-controlled Cu2ZnSnS4 nanoparticles prepared by a solution-based approach. Phys. Chem. Chem. Phys. 16, 672–675 (2014) S. Sharma, S. Chaudhary, A. Kapoor, Structural and optical properties of thermally treated CdO thin films deposited on ITO coated glass substrates for photovoltaic applications. J. Sol-Gel Sci. Technol. 82, 315–321 (2017) R. Kumar, N. Khare, V. Kumar, G.L. Bhalla, Effect of intrinsic stress on the optical properties of nanostructured ZnO thin films grown by rf magnetron sputtering. Appl. Surf. Sci. 254, 6509–6513 (2008) Z. Seboui, A. Gassoumi, N. Kamoun-Turki, Evolution of sprayed Cu2ZnSnS4. Mater. Sci. Semicond. Process. 26, 360–366 (2014) Y.B.K. Kumar, P.U. Bhaskar, G.S. Babu, V.S. Raja, Effect of copper salt and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by spray pyrolysis. Phys. Stat. Sol. A 207, 149–156 (2010) T. Tanaka, A. Yoshida, D. Saiki, K. Saito, Q. Guo, M. Nishio, T. Yamaguchi, Influence of composition ratio on properties of Cu2ZnSnS4 thin films fabricated by co-evaporation. Thin Solid Films 518, 29–33 (2010) M. Valdés, G. Santoro, M. Vàzquez, Spray deposition of Cu2ZnSnS4 thin films. J. Alloy. Compd. 585, 776–782 (2014) S.A. Khalate, R.S. Kate, J.H. Kim, S.M. Pawar, R.J. Deokate, Effect of deposition temperature on the properties of Cu2ZnSnS4 (CZTS) thin films. Superlattice. Microst. 103, 335–342 (2017) S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013) M.Z. Ansari, N. Khare, Effect of intrinsic strain on the optical band gap of single phase nanostructured Cu2ZnSnS4. Mater. Sci. Semicond. Process. 63, 220–226 (2017) J. Liu, F. Luo, A. Wei, Z. Liu, Y. Zhao, In-situ growth of Cu2ZnSnS4 nanospheres thin film on transparent conducting glass and its application in dye-sensitized solar cells. Mater. Lett. 141, 228–230 (2015) M.Z. Ansari, N. Khare, Mott variable range hopping conduction mechanism in single-phase CZTS thin film. AIP Conf. Proc. 1665, 110012–1–110012-3 (2015) H. Jiang, P. Dai, Z. Feng, W. Fan, J. Zhan, Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J. Mater. Chem. 22, 7502–7506 (2012) T. Chandel, M.B. Zaman, S.K. Dwivedi, R. Poolla, Structural, morphological and optical properties of sprayed Cu2ZnSnS4 thin films by varying the molar concentration of Zn & Sn. Vacuum 159, 341–345 (2019) S. Singh, S. Munjal, N. Khare, Strain/defect induced enhanced coercivity in single domain CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 386, 69–73 (2015) Y. Shahmoradi, D. Souri, Growth of silver nanoparticles within the tellurovanadate amorphous matrix: optical band gap and band tailing properties, beside the Williamson-Hall estimation of crystallite size and lattice strain. Ceram. Int. 45, 7857–7864 (2019) R. Touati, M.B. Rabeh, M. Kanzari, Structural and optical properties of the new absorber Cu2ZnSnS4 thin films grown by vacuum evaporation method. Energy Procedia 44, 44–51 (2014) S.M. Bhosale, M.P. Suryawanshi, M.A. Gaikwad, P.N. Bhosale, J.H. Kim, A.V. Moholkar, Influence of growth temperatures on the properties of photoactive CZTS thin films using a spray pyrolysis technique. Mater. Lett. 129, 153–155 (2014) S.A. Vanalakar, G.L. Agawane, S.W. Shin, M.P. Suryawanshi, K.V. Gurav, K.S. Jeon, P.S. Patil, C.W. Jeong, J.Y. Kim, J.H. Kim, A review on pulsed laser deposited CZTS thin films for solar cell applications. J. Alloy. Compd. 619, 109–121 (2015) J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972) S. Mahjoubi, N. Bitri, M. Abaab, I. Ly, Effect of copper concentration on the characteristics of Cu2ZnSnS4 (CZTS) thin films. Mater. Lett. 216, 154–157 (2018) N. Khothong, T. Anantamongkolchai, P. Vas-Umnuay, Morphology and structure controlled fabrication of Cu2ZnSnS4 thin films by convective assembly deposition. Ceram. Int. 45, 6102–6110 (2019) M. Sampath, K. Sankarasubramanian, J. Archana, Y. Hayakawa, K. Ramamurthi, K. Sethuraman, Structural, optical and photocatalytic properties of spray deposited Cu2ZnSnS4 thin films with various S/(Cu+Zn+Sn) ratio. Mater. Sci. Semicond. Process. 87, 54–64 (2018) A. Emrani, P. Vasekar, C.R. Westgate, Effects of sulfurization temperature on CZTS thin film solar cell performances. Sol. Energy 98, 335–340 (2013) W.C. Liu, B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak, K.H. Wong, Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J. Mater. Chem. A 1, 3182–3186 (2013) M.S. Ramachandra Rao, T. Okada, ZnO nanocrystals and allied materials. Springer series in materials science book 180 (Springer, Berlin, 2014) T. Lehnen, D. Zopes, S. Mathur, Phase-selective microwave synthesis and inkjet printing applications of Zn2SnO4 (ZTO) quantum dots. J. Mater. Chem. 22, 17732–17736 (2012) A. Singh, H. Geaney, F. Laffir, K.M. Ryan, Colloidal Synthesis of Wurtzite Cu2ZnSnS4 Nanorods and Their Perpendicular Assembly. J. Am. Chem. Soc. 134, 2910–2913 (2012) C. Persson, Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 107, 053710–1–053710-8 (2010) A. Khare, A.W. Wills, L.M. Ammerman, D.J. Norris, E.S. Aydil, Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chem. Commun. 47, 11721–11723 (2011) C. Kim, S. Hong, Band gap shift of Cu2ZnSnS4 thin film by residual stress. J. Alloy. Compd. 799, 247–255 (2019)