Crystal structure of strontium potassium arsenate octahydrate

Springer Science and Business Media LLC - Tập 28 - Trang 741-746 - 1998
M. Mathew1
1Paffenbarger Research Center, American Dental Association Health Foundation, National Institute of Standards and Technology, Gaithersburg

Tóm tắt

The crystal structure of strontium potassium arsenate octahydrate, SrKAsO4·8H2O, has been determined by single crystal X-ray diffraction. The crystals are tetragonal, a = 7.144(1), c = 23.613(2) Å, space group I41md (No. 109), Z = 4, V = 1205.1(1) Å3, and d c = 2.258 g cm−3. All cations and anions in this compound are completely surrounded by water molecules. Sr2+ and K+ ions are each coordinated to eight water molecules arranged in an approximately square antiprism. The [Sr(H2O)8]2+ polyhedron shares one face of four water molecules with a [K(H2O)8]+ polyhedron forming O4-Sr-O4-K-O4 polyhedra. The O4-Sr-O4-K-O4 units are linked together through a pair of edge-sharing linkages of the outer water molecules, alternating along the a-axis and b-axis. The hydrated cation polyhedra appear to define the host lattice, which accommodates the AsO 4 3- ion in the interstitial space. The environment of the AsO 4 3- ion consists of 16 water molecules; each oxygen atom is the acceptor in hydrogen bonds from four water molecules. The pair distances associated with this environment may be used in investigations of the structure of hydrated 4 n- ions in solutions. Each water molecule is coordinated to one Sr and one K, and hydrogen bonded to two O atoms of two different AsO 4 3- ions. There is no hydrogen bonding between water molecules.

Tài liệu tham khảo

Ohtaki, H.; Radnai, T. Chem. Rev. 1993, 93, 1157. Magini, M.; Licheri, G.; Paschina, G.; Piccaluga, G.; Pinna, G. X-ray Diffraction of Ions in Aqueous Solutions: Hydration and Complex Formation; C.R.C. Press: Boca Raton, FL, 1988. Burgess, J. Metal Ions in Solution; Ellis Horwood: New York, 1978. Whitaker, A.; Jeffery, J.W. Acta Crystallogr. 1970, B26, 1429. Dickens, B.; Brown, W.E. Acta Crystallogr. 1972, B28, 3056. Takagi, S.; Mathew, M.; Brown, W.E. Acta Crystallogr. 1982, B38, 1408. Mathew, M.; Kingsbury, P.; Takagi, S.; Brown, W.E. Acta Crystallogr. 1982, B38, 40. Smith, H.G. Acta Crystallogr. 1953, 6, 604. Persson, I.; Sandstrom, M.; Yokoyama, H.; and Chaudhry, M. Z. Naturforsch. 1995, 50a, 21. Lazarini, F.; Leban, I. Acta Crystallogr. 1980, B36, 2745. Barnighausen, H.; Weidlein, J. Acta Crystallogr. 1967, 22, 252. Kuske, P.; Engelen, B.; Henning, J.; Lutz, H. Z. Kristallogr. 1988, 183, 319. Schroeder, L.W.; Mathew, M.; Brown, W.E. J. Phys. Chem. 1978, 82, 2335. Mathew, M. J. Chem. Crystallogr. 1996, 26, 341. Takagi, S.; Mathew, M.; Brown, W.E. Acta Crystallogr. 1984, C40, 1111. Takagi, S.; Mathew, M.; Brown, W.E. Acta Crystallogr. 1982, B38, 44. Albright, J.N. J. Chem. Phys. 1972, 56, 3783. Caminiti, R.; Musinu, A.; Paschina, G.; Pinna, G. J. Appl. Crystallogr. 1982, 15, 482. Neilson, G.W.; Broadbent, R.D. Chem. Phys. Lett. 1990, 167, 429. Spohr, E.; Palinkas, G.; Heinzinger, K.; Bopp, P.; Probst, M.M. J. Phys. Chem. 1992, 92, 6754.