Crystal structure of human stearoyl–coenzyme A desaturase in complex with substrate

Nature Structural and Molecular Biology - Tập 22 Số 7 - Trang 581-585 - 2015
Hui Wang1, Michael G. Klein1, Hua Zou1, Weston Lane1, G. Snell1, Irena Levin1, Ke Li1, Bi-Ching Sang1
1Department of Structural Biology and Core Sciences &Technology, Takeda California, San Diego, California, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhang, Z., Dales, N.A. & Winther, M.D. Opportunities and challenges in developing stearoyl-coenzyme A desaturase-1 inhibitors as novel therapeutics for human disease. J. Med. Chem. 57, 5039–5056 (2014).

Enoch, H.G., Catala, A. & Strittmatter, P. Mechanism of rat liver microsomal stearyl-CoA desaturase: studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J. Biol. Chem. 251, 5095–5103 (1976).

Guy, J.E., Whittle, E., Kumaran, D., Lindqvist, Y. & Shanklin, J. The crystal structure of the ivy Δ4–16:0-ACP desaturase reveals structural details of the oxidized active site and potential determinants of regioselectivity. J. Biol. Chem. 282, 19863–19871 (2007).

Lindqvist, Y., Huang, W., Schneider, G. & Shanklin, J. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. EMBO J. 15, 4081–4092 (1996).

Moche, M., Shanklin, J., Ghoshal, A. & Lindqvist, Y. Azide and acetate complexes plus two iron-depleted crystal structures of the di-iron enzyme Δ9 stearoyl-acyl carrier protein desaturase: implications for oxygen activation and catalytic intermediates. J. Biol. Chem. 278, 25072–25080 (2003).

Whittle, E., Cahoon, E.B., Subrahmanyam, S. & Shanklin, J. A multifunctional acyl-acyl carrier protein desaturase from Hedera helix L. (English ivy) can synthesize 16- and 18-carbon monoene and diene products. J. Biol. Chem. 280, 28169–28176 (2005).

Shanklin, J., Guy, J.E., Mishra, G. & Lindqvist, Y. Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes. J. Biol. Chem. 284, 18559–18563 (2009).

Man, W.C., Miyazaki, M., Chu, K. & Ntambi, J.M. Membrane topology of mouse stearoyl-CoA desaturase 1. J. Biol. Chem. 281, 1251–1260 (2006).

Stefan, N. et al. Low hepatic stearoyl-CoA desaturase 1 activity is associated with fatty liver and insulin resistance in obese humans. Diabetologia 51, 648–656 (2008).

Morgan-Lappe, S.E. et al. Identification of Ras-related nuclear protein, targeting protein for Xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res. 67, 4390–4398 (2007).

Dobrzyn, A. & Ntambi, J.M. Stearoyl-CoA desaturase as a new drug target for obesity treatment. Obes. Rev. 6, 169–174 (2005).

Igal, R.A. Roles of stearoylCoA desaturase-1 in the regulation of cancer cell growth, survival and tumorigenesis. Cancers (Basel) 3, 2462–2477 (2011).

Attie, A.D. et al. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J. Lipid Res. 43, 1899–1907 (2002).

Hulver, M.W. et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2, 251–261 (2005).

Liu, G. Stearoyl-CoA desaturase inhibitors: update on patented compounds. Expert. Opin. Ther. Pat. 19, 1169–1191 (2009).

Powell, D.A. An overview of patented small molecule stearoyl coenzyme-A desaturase inhibitors (2009–2013). Expert. Opin. Ther. Pat. 24, 155–175 (2014).

Shanklin, J., Whittle, E. & Fox, B.G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33, 12787–12794 (1994).

Sazinsky, M.H. & Lippard, S.J. Correlating structure with function in bacterial multicomponent monooxygenases and related diiron proteins. Acc. Chem. Res. 39, 558–566 (2006).

Rather, L.J. et al. Structure and mechanism of the diiron benzoyl-coenzyme A epoxidase BoxB. J. Biol. Chem. 286, 29241–29248 (2011).

Nordlund, P., Sjöberg, B.M. & Eklund, H. Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 345, 593–598 (1990).

Heilmann, I., Mekhedov, S., King, B., Browse, J. & Shanklin, J. Identification of the Arabidopsis palmitoyl-monogalactosyldiacylglycerol delta7-desaturase gene FAD5, and effects of plastidial retargeting of Arabidopsis desaturases on the fad5 mutant phenotype. Plant Physiol. 136, 4237–4245 (2004).

Matsumoto, Y. et al. Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nat. Struct. Mol. Biol. 19, 238–245 (2012).

Hino, T. et al. Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330, 1666–1670 (2010).

Derewenda, Z.S. Rational protein crystallization by mutational surface engineering. Structure 12, 529–535 (2004).

Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

Wang, B.C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 115, 90–112 (1985).

Adams, P.D. et al. Phenix: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

Chen, V.B. et al. Molprobity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

Collaborative Computing Project. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. & Barton, G.J. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).