Crystal structure of a T cell receptor bound to an allogeneic MHC molecule
Tóm tắt
Từ khóa
Tài liệu tham khảo
Goldrath, A. W. & Bevan, M. J. Selecting and maintaining a diverse T-cell repertoire. Nature 402 , 255–262 (1999).
Garcia, K. C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).
Garboczi, D. N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134– 141 (1996).
Ding, Y. H. et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino-acids. Immunity 8, 1–20 ( 1998).
Lee, P. U. Y., Churchill, H. R. O., Daniels, M., Jameson, S. & Kranz, D. Role of the 2C T cell receptor residues in the binding of self- and allo-major histocompatibility complexes. J. Exp. Med. 191, 1355–1364 (2000).
Rock E. P., Sibbald, P. R., Davis, M. M. & Chien, Y. CDR3 length in antigen-specific immune receptors. J. Exp. Med. 179, 323–328 (1994).
Guimezanes, A., Schumacher, T. N. M., Ploegh, H. L. & Schmitt-Verhulst, A.-M. A viral peptide can mimic an endogeneous peptide for allorecognition of a major histocompatibility complex class I product. Eur. J. Immunol . 22, 1651–1654 ( 1992).
Daniel, C., Horvath, S. & Allen, P. M. A basis for alloreactivity: MHC helical residues broaden peptide recognition by the TCR. Immunity 8, 543–552.
Speir, J. A. et al. Structural basis of 2C TCR allorecognition of H-2Ld peptide complexes. Immunity 8, 553–562 (1998).
Wang, J. et al. Atomic structure of an αβ T cell receptor (TCR) heterodimer in complex with an anti-TCR Fab fragment derived from a mitogenic antibody . EMBO J. 17, 10–26 (1998).
Young, A. C., Zhang, W., Sacchettini, J. C. & Nathenson, S. G. The three-dimensional structure of H-2Db at 2.4Å resolution: implications for antigen-determinant selection. Cell 76, 39–50 (1994).
Braden, B. C., Goldman, E. R., Mariuzza, R. A. & Poljak, R. J. Anatomy of an antibody molecule: structure, kinetics, thermodynamics and mutational studies of the anti lysozyme antibody D1.3. Immunol. Rev. 163, 45–57 (1998).
Zerrahn, J., Held, W. & Raulet, D. J. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).
Merkenschlager, M. et al. How many thymocytes audition for selection? J. Exp. Med. 186, 1149–1158 (1997).
Jouvin-Marche, E. et al. Genomic organization of the mouse T cell receptor Vα family. EMBO J. 9, 2141– 2150 (1990).
Fremont, D. H., Matsumura, M., Stura, E. A., Peterson, P. A. & Wilson, I. A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257, 919–927 ( 1992).
Malissen, M. et al. A T cell clone expresses two T cell receptor α genes but uses one αβ heterodimer for allorecognition and self MHC-restricted antigen recognition. Cell 55, 49– 59 (1988).
Bevan, M. J. High determinant density may explain the phenomenon of alloreactivity Immunol. Today 5, 128– 130 (1984).
Matzinger, P. & Bevan, M. J. Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell. Immunol. 29, 1–5 (1977).
Albert, F., Boyer, C., Buferne, M. & Schmitt-Verhulst, A.-M. Interaction between MHC-encoded products and cloned T cells. II. Analyses of physiological requirements indicate two different pathways of stimulation by class I alloantigens . Immunogenetics 19, 279– 294 (1984).
Pullen, J. K., Horton, R. M., Cai, Z. & Pease, L. R. Structural diversity of the classical H-2 genes: K, D, and L. J. Immunol. 148, 953–967 (1992).
Little, M. T. & Storb, R. The future of allogeneic stem cell transplantation: minimizing pain, maximizing gain. J. Clin. Invest. 105, 1679–1681 ( 2000).
Obst, R., Netuschil, N., Klopfer, K., Stevanovic, S. & Rammensee, H. G. The role of peptides in T cell alloreactivity is determined by self-major histocompatibility complex molecules . J. Exp. Med. 191, 805– 812 (2000).
Couez, D., Malissen M., Buferne, M., Schmitt-Verhulst, A. M. & Malissen, B. Each of the two productive T cell receptor α-gene rearrangements found in both the A10 and BM3-3 T cell clones give rise to an α chain which can contribute to the constitution of a surface-expressed αβ dimer. Int. Immunol. 3, 719– 729 (1991).
Grégoire, C., Malissen, B. & Mazza, G. Characterization of T cell receptor single-chain Fv fragments secreted by myeloma cells. Eur. J. Immunol. 26, 2410–2416 (1996).
Zhang, W., Young, A. C. M., Imarai, M., Nathenson, S. G. & Sacchettini, J. C. Crystal structure of the major histocompatibility complex class I H-2Kb molecule containing a single viral peptide: implications for peptide binding and T-cell receptor recognition . Proc. Natl Acad. Sci. USA 89, 8403– 8407 (1992).
Willcox, B. E. et al. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 10, 357– 365 (1999).
Wlodawer, A. & Hodgson, K. O. Crystallization and crystal data of monellin. Proc. Natl Acad. Sci. USA 72, 398–399 (1975).
Leslie, A. G. W. in Crystallographic Computing (eds Moras, D., Podjarny, A. D. & Thierry, J. C.) 50–60 (Oxford Univ. Press, 1991).
Computational Project Number 4, CCP4, The CCP4 Suite: Programs for Protein Crystallography. Acta Cryst. D50, 760 (1994).
Housset, D. et al. The three-dimensional structure of a T-cell antigen receptor Vα Vβ heterodimer reveals a novel arrangement of the Vβ domain . EMBO J. 16, 4205–4216 (1997).
Fremont, D. H., Stura, E. A., Matsumura, M., Peterson, P. A. & Wilson, I. A. Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. Proc. Natl Acad. Sci. USA 92, 2479– 2483 (1995).
Jones, T. A., Zou, J-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110– 119 (1991).
Hubbard, S. J. & Thornton, J. P. “NACCESS” Computer Program, Department of Biochemistry and Molecular Biology, University College London (1993).
Nicholls, A., Scharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).
Kraulis, P. J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).