Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4 ceramic
Tài liệu tham khảo
Sleight, 1976, Olefin oxide over oxide catalysts with the scheelite structure, Ann. N. Y. Acad. Sci., 272, 22, 10.1111/j.1749-6632.1976.tb34222.x
Sleight, 1975, New nonstoichiometric molybdate, tungstate, and vanadate catalysts with the scheelite-type structure, J. Solid State Chem., 13, 231, 10.1016/0022-4596(75)90124-3
Varghese, 2016, Structural, dielectric, and thermal properties of Pb free molybdate based ultralow temperature glass, ACS Sustain. Chem. Eng., 4, 3897, 10.1021/acssuschemeng.6b00721
Joseph, 2016, Glass-free CuMoO4 ceramic with excellent dielectric and thermal properties for ultralow temperature cofired ceramic applications, ACS Sustain. Chem. Eng., 4, 5632, 10.1021/acssuschemeng.6b01537
Sebastian, 2016, Low temperature co-fired ceramics with ultra-low sintering temperature: a review, Curr. Opin. Solid State Mater. Sci., 20, 151, 10.1016/j.cossms.2016.02.004
Zhou, 2011, Microwave dielectric properties of (ABi)1/2MoO4 (A = Li, Na, K, Rb, Ag) type ceramics with ultra-low firing temperatures, Mater. Chem. Phys., 129, 688, 10.1016/j.matchemphys.2011.05.040
Pang, 2017, Structure–Property relationships of low sintering temperature scheelite-structured (1-x)BiVO4–xLaNbO4 microwave dielectric ceramics, J. Mater. Chem. C, 5, 2695, 10.1039/C6TC05670A
Kato, 2004, Photophysical and photocatalytic properties of molybdates and tungstates with a scheelite structure, Chem. Lett., 33, 1216, 10.1246/cl.2004.1216
Hazen, 1985, High-pressure crystal chemistry of scheelite-type tungstates and molybdates, J. Phys. Chem. Solids, 46, 253, 10.1016/0022-3697(85)90039-3
Klein, 1985, 356
Tokunaga, 2001, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater., 13, 4624, 10.1021/cm0103390
Mariathasan, 1985, High-pressure crystal chemistry of scheelite-type tungstates and molybdates, J. Phys. Chem. Solids, 46, 253, 10.1016/0022-3697(85)90039-3
Kolitsch, 2003, Bi3ScMo2O12: the difference from Bi3FeMo2O12, Acta Crystallogr. E Struct. Rep., 59, i43, 10.1107/S160053680300374X
Tarte, 1972, Vibrational studies of molybdates, tungstates and related compounds—I: new infrared data and assignments for the scheelite-type compounds XIIMoO4 and XIIWO4, Spectrochim. Acta Part A, 28, 2029, 10.1016/0584-8539(72)80177-6
Cheviré, 2004, New scheelite-type oxynitrides in systems RWO3N–AWO4 (R= rare-earth element; A= Ca, Sr) from precursors obtained by the citrate route, Mater. Res. Bull., 39, 1091, 10.1016/j.materresbull.2004.02.016
Klevtsova, 1974, Production and structure of potassium-duropium molybdate crystals KEu(MoO4)2, Kristallographie, 19, 89
Sleight, 1974, Bi3(FeO4)(MoO4)2 and Bi3(GaO4)(MoO4)2 - new compounds with scheelite related structures, Mater. Res. Bull., 9, 951, 10.1016/0025-5408(74)90175-5
Choi, 2007, Microwave dielectric properties of scheelite (A= Ca, Sr, Ba) and wolframite (A= Mg, Zn, Mn) AMoO4 compounds, J. Eur. Ceram. Soc., 27, 3063, 10.1016/j.jeurceramsoc.2006.11.037
Yoon, 2006, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds, J. Eur. Ceram. Soc., 26, 2051, 10.1016/j.jeurceramsoc.2005.09.058
Zhou, 2016, Novel temperature stable high-εr microwave dielectrics in the Bi2O3–TiO2–V2O5 system, J. Mater. Chem. C, 4, 5357, 10.1039/C6TC01431C
Zhou, 2012, Phase evolution, phase transition, and microwave dielectric properties of scheelite structured xBi(Fe1/3Mo2/3)O4–(1−x)BiVO4 (0.0≤ x≤ 1.0) low temperature firing ceramics, J. Mater. Chem., 22, 21412, 10.1039/c2jm34603f
Lu, 1986, Electrical conductivity of polycrystalline BiVO4 samples having the scheelite structure, Solid State Ion., 21, 339, 10.1016/0167-2738(86)90196-7
Sleight, 1979, Crystal growth and structure of BiVO4, Mater. Res. Bull., 14, 1571, 10.1016/0025-5408(72)90227-9
Valant, 2000, Chemical compatibility between silver electrodes and low-firing binary-oxide compounds: conceptual study, J. Am. Ceram. Soc., 83, 2721, 10.1111/j.1151-2916.2000.tb01623.x
Wee, 2004, Microwave dielectric properties of low-fired ZnNb2O6 ceramics with BiVO4 addition, J. Am. Ceram. Soc., 87, 871, 10.1111/j.1551-2916.2004.00871.x
Zhou, 2011, Sintering behavior and microwave dielectric properties of novel low temperature firing Bi3FeMo2O12 ceramic, J. Adv. Dielectr., 1, 379, 10.1142/S2010135X11000550
Pang, 2013, Microwave dielectric properties of scheelite structured low temperature fired Bi(In1/3Mo2/3)O4 ceramic, Ceram. Int., 39, 4719, 10.1016/j.ceramint.2012.11.021
Wakino, 1986, Far infrared reflection spectra of Ba(Zn, Ta)O3‐BaZrO3 dielectric resonator material, J. Am. Ceram. Soc., 69, 34, 10.1111/j.1151-2916.1986.tb04689.x
Kamba, 2006, Correlation between infrared, THz and microwave dielectric properties of vanadium doped antiferroelectric BiNbO4, J. Eur. Ceram. Soc., 26, 2861, 10.1016/j.jeurceramsoc.2006.02.002
Tonouchi, 2007, Cutting-edge terahertz technology, Nat. Photon., 1, 97, 10.1038/nphoton.2007.3
Duvillaret, 1999, Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy, Appl. Opt., 38, 409, 10.1364/AO.38.000409
Nashima, 2001, Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies, J. Appl. Phys., 90, 837, 10.1063/1.1376673
Krupka, 1998, A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as a function of temperature, Meas. Sci. Technol., 9, 1751, 10.1088/0957-0233/9/10/015
Shannon, 1993, Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys., 73, 348, 10.1063/1.353856
Rysselberghe, 1932, Remarks concerning the Clausius–Mossotti law, J. Phys. Chem., 36, 1152, 10.1021/j150334a007
Li, 2016, Structure, infrared reflectivity and microwave dielectric properties of (Na0.5La0.5)MoO4–(Na0.5Bi0.5)MoO4 ceramics, J. Am. Ceram. Soc., 99, 2083, 10.1111/jace.14175
Wang, 2005, Low-temperature sintered Zn(Nb1−xVx/2)2O6−2.5x microwave dielectric ceramics with high Q value for LTCC application, J. Alloys Comp., 392, 263, 10.1016/j.jallcom.2004.07.086
Yoon, 2006, Microwave dielectric properties of LiNb3O8 ceramics with TiO2 additions, J. Eur. Ceram. Soc., 26, 2031, 10.1016/j.jeurceramsoc.2005.09.028
Tong, 2005, Low-temperature firing and microwave dielectric properties of Ca[(Li0.33Nb0.67)0.9Ti0.1]O3−δ ceramics with LiF addition, Mater. Lett., 59, 3252, 10.1016/j.matlet.2005.05.053
Choi, 2007, Middle- and high-permittivity dielectric compositions for low-temperature co-fired ceramics, J. Eur. Ceram. Soc., 27, 2017, 10.1016/j.jeurceramsoc.2006.05.104
Zhou, 2014, Structure, phase evolution, and microwave dielectric properties of (Ag0.5Bi0.5)(Mo0.5W0.5)O4 ceramic with ultra low sintering temperature, Inorg. Chem., 53, 5712, 10.1021/ic5004808
Surendran, 2005, Effect of stoichiometry on the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 dielectric ceramics, Chem. Mater., 17, 142, 10.1021/cm048411s