Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4 ceramic

Journal of the European Ceramic Society - Tập 38 - Trang 1556-1561 - 2018
Di Zhou1,2, Li-Xia Pang1,3, Da-Wei Wang1, Huan-Huan Guo2, Fan Yang1, Ze-Ming Qi4, Chun Li5, Biao-Bing Jin5, Ian M. Reaney1
1Department of Materials Science and Engineering, University of Sheffield, S1 3JD, UK
2Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi׳an Jiaotong University, Xi׳an 710049 Shaanxi, China
3Micro-optoelectronic Systems Laboratories, Xi’an Technological University, Xi’an 710032, Shaanxi, China
4National Synchrotron Radiation Laboratory, University of Science and Technology of China, Anhui, 230029, Hefei, China
5Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China

Tài liệu tham khảo

Sleight, 1976, Olefin oxide over oxide catalysts with the scheelite structure, Ann. N. Y. Acad. Sci., 272, 22, 10.1111/j.1749-6632.1976.tb34222.x Sleight, 1975, New nonstoichiometric molybdate, tungstate, and vanadate catalysts with the scheelite-type structure, J. Solid State Chem., 13, 231, 10.1016/0022-4596(75)90124-3 Varghese, 2016, Structural, dielectric, and thermal properties of Pb free molybdate based ultralow temperature glass, ACS Sustain. Chem. Eng., 4, 3897, 10.1021/acssuschemeng.6b00721 Joseph, 2016, Glass-free CuMoO4 ceramic with excellent dielectric and thermal properties for ultralow temperature cofired ceramic applications, ACS Sustain. Chem. Eng., 4, 5632, 10.1021/acssuschemeng.6b01537 Sebastian, 2016, Low temperature co-fired ceramics with ultra-low sintering temperature: a review, Curr. Opin. Solid State Mater. Sci., 20, 151, 10.1016/j.cossms.2016.02.004 Zhou, 2011, Microwave dielectric properties of (ABi)1/2MoO4 (A = Li, Na, K, Rb, Ag) type ceramics with ultra-low firing temperatures, Mater. Chem. Phys., 129, 688, 10.1016/j.matchemphys.2011.05.040 Pang, 2017, Structure–Property relationships of low sintering temperature scheelite-structured (1-x)BiVO4–xLaNbO4 microwave dielectric ceramics, J. Mater. Chem. C, 5, 2695, 10.1039/C6TC05670A Kato, 2004, Photophysical and photocatalytic properties of molybdates and tungstates with a scheelite structure, Chem. Lett., 33, 1216, 10.1246/cl.2004.1216 Hazen, 1985, High-pressure crystal chemistry of scheelite-type tungstates and molybdates, J. Phys. Chem. Solids, 46, 253, 10.1016/0022-3697(85)90039-3 Klein, 1985, 356 Tokunaga, 2001, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater., 13, 4624, 10.1021/cm0103390 Mariathasan, 1985, High-pressure crystal chemistry of scheelite-type tungstates and molybdates, J. Phys. Chem. Solids, 46, 253, 10.1016/0022-3697(85)90039-3 Kolitsch, 2003, Bi3ScMo2O12: the difference from Bi3FeMo2O12, Acta Crystallogr. E Struct. Rep., 59, i43, 10.1107/S160053680300374X Tarte, 1972, Vibrational studies of molybdates, tungstates and related compounds—I: new infrared data and assignments for the scheelite-type compounds XIIMoO4 and XIIWO4, Spectrochim. Acta Part A, 28, 2029, 10.1016/0584-8539(72)80177-6 Cheviré, 2004, New scheelite-type oxynitrides in systems RWO3N–AWO4 (R= rare-earth element; A= Ca, Sr) from precursors obtained by the citrate route, Mater. Res. Bull., 39, 1091, 10.1016/j.materresbull.2004.02.016 Klevtsova, 1974, Production and structure of potassium-duropium molybdate crystals KEu(MoO4)2, Kristallographie, 19, 89 Sleight, 1974, Bi3(FeO4)(MoO4)2 and Bi3(GaO4)(MoO4)2 - new compounds with scheelite related structures, Mater. Res. Bull., 9, 951, 10.1016/0025-5408(74)90175-5 Choi, 2007, Microwave dielectric properties of scheelite (A= Ca, Sr, Ba) and wolframite (A= Mg, Zn, Mn) AMoO4 compounds, J. Eur. Ceram. Soc., 27, 3063, 10.1016/j.jeurceramsoc.2006.11.037 Yoon, 2006, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds, J. Eur. Ceram. Soc., 26, 2051, 10.1016/j.jeurceramsoc.2005.09.058 Zhou, 2016, Novel temperature stable high-εr microwave dielectrics in the Bi2O3–TiO2–V2O5 system, J. Mater. Chem. C, 4, 5357, 10.1039/C6TC01431C Zhou, 2012, Phase evolution, phase transition, and microwave dielectric properties of scheelite structured xBi(Fe1/3Mo2/3)O4–(1−x)BiVO4 (0.0≤ x≤ 1.0) low temperature firing ceramics, J. Mater. Chem., 22, 21412, 10.1039/c2jm34603f Lu, 1986, Electrical conductivity of polycrystalline BiVO4 samples having the scheelite structure, Solid State Ion., 21, 339, 10.1016/0167-2738(86)90196-7 Sleight, 1979, Crystal growth and structure of BiVO4, Mater. Res. Bull., 14, 1571, 10.1016/0025-5408(72)90227-9 Valant, 2000, Chemical compatibility between silver electrodes and low-firing binary-oxide compounds: conceptual study, J. Am. Ceram. Soc., 83, 2721, 10.1111/j.1151-2916.2000.tb01623.x Wee, 2004, Microwave dielectric properties of low-fired ZnNb2O6 ceramics with BiVO4 addition, J. Am. Ceram. Soc., 87, 871, 10.1111/j.1551-2916.2004.00871.x Zhou, 2011, Sintering behavior and microwave dielectric properties of novel low temperature firing Bi3FeMo2O12 ceramic, J. Adv. Dielectr., 1, 379, 10.1142/S2010135X11000550 Pang, 2013, Microwave dielectric properties of scheelite structured low temperature fired Bi(In1/3Mo2/3)O4 ceramic, Ceram. Int., 39, 4719, 10.1016/j.ceramint.2012.11.021 Wakino, 1986, Far infrared reflection spectra of Ba(Zn, Ta)O3‐BaZrO3 dielectric resonator material, J. Am. Ceram. Soc., 69, 34, 10.1111/j.1151-2916.1986.tb04689.x Kamba, 2006, Correlation between infrared, THz and microwave dielectric properties of vanadium doped antiferroelectric BiNbO4, J. Eur. Ceram. Soc., 26, 2861, 10.1016/j.jeurceramsoc.2006.02.002 Tonouchi, 2007, Cutting-edge terahertz technology, Nat. Photon., 1, 97, 10.1038/nphoton.2007.3 Duvillaret, 1999, Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy, Appl. Opt., 38, 409, 10.1364/AO.38.000409 Nashima, 2001, Temperature dependence of optical and electronic properties of moderately doped silicon at terahertz frequencies, J. Appl. Phys., 90, 837, 10.1063/1.1376673 Krupka, 1998, A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as a function of temperature, Meas. Sci. Technol., 9, 1751, 10.1088/0957-0233/9/10/015 Shannon, 1993, Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys., 73, 348, 10.1063/1.353856 Rysselberghe, 1932, Remarks concerning the Clausius–Mossotti law, J. Phys. Chem., 36, 1152, 10.1021/j150334a007 Li, 2016, Structure, infrared reflectivity and microwave dielectric properties of (Na0.5La0.5)MoO4–(Na0.5Bi0.5)MoO4 ceramics, J. Am. Ceram. Soc., 99, 2083, 10.1111/jace.14175 Wang, 2005, Low-temperature sintered Zn(Nb1−xVx/2)2O6−2.5x microwave dielectric ceramics with high Q value for LTCC application, J. Alloys Comp., 392, 263, 10.1016/j.jallcom.2004.07.086 Yoon, 2006, Microwave dielectric properties of LiNb3O8 ceramics with TiO2 additions, J. Eur. Ceram. Soc., 26, 2031, 10.1016/j.jeurceramsoc.2005.09.028 Tong, 2005, Low-temperature firing and microwave dielectric properties of Ca[(Li0.33Nb0.67)0.9Ti0.1]O3−δ ceramics with LiF addition, Mater. Lett., 59, 3252, 10.1016/j.matlet.2005.05.053 Choi, 2007, Middle- and high-permittivity dielectric compositions for low-temperature co-fired ceramics, J. Eur. Ceram. Soc., 27, 2017, 10.1016/j.jeurceramsoc.2006.05.104 Zhou, 2014, Structure, phase evolution, and microwave dielectric properties of (Ag0.5Bi0.5)(Mo0.5W0.5)O4 ceramic with ultra low sintering temperature, Inorg. Chem., 53, 5712, 10.1021/ic5004808 Surendran, 2005, Effect of stoichiometry on the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 dielectric ceramics, Chem. Mater., 17, 142, 10.1021/cm048411s