Crystal structure and thermodynamic properties of the coordination compound calcium D-gluconate Ca[D-C6H11O7]2(s)
Tài liệu tham khảo
Bao, 2001, A kinetic study on air oxidation of glucose catalyzed by immobilized glucose oxidase for production of calcium gluconate, Biochem. Eng. J., 8, 91, 10.1016/S1369-703X(00)00140-6
Sharma, 2008, Solid-state fermentation for gluconic acid production from sugarcane molasses by Aspergillus Niger ARNU-4 employing tea waste as the novel solid support, Bioresour. Technol., 99, 3444, 10.1016/j.biortech.2007.08.006
Znad, 2004, Production of gluconic acid from glucose by Aspergillus Niger: growth and non-growth conditions, Process Biochem., 39, 1341, 10.1016/S0032-9592(03)00270-X
Omu, 2008, Magnesium sulphate therapy in women with pre-eclampsia and eclampsia in Kuwait, Med. Princ. Pract., 17, 227, 10.1159/000117797
Lo Presti, 2000, Recovery of sodium gluconate from model solutions by reverse osmosis, J. Food Eng., 44, 109, 10.1016/S0260-8774(99)00172-7
Mariam, 2010, Application of 2-factorial design on the enhanced production of calcium gluconate by a mutant strain of Aspergillus Niger, Bioresour. Technol., 101, 4075, 10.1016/j.biortech.2009.12.122
Liu, 2020, Crystal structure and thermochemical properties of cesium D-gluconate Cs[D-C6H11O7](s), J. Mol. Struct., 1199, 126977, 10.1016/j.molstruc.2019.126977
Di, 2017, Crystal structure and thermochemical properties of potassium pyruvate C3H3O3K(s), J. Therm. Anal. Calorim., 127, 1523, 10.1007/s10973-016-5648-7
Liu, 2011, Crystal structures, lattice potential energies, and thermochemical properties of crystalline compounds (1-CnH2n+1NH3)2ZnCl4(s)(n = 8, 10, 12, and 13), Inorg. Chem., 50, 10755, 10.1021/ic2012974
Shi, 2010, Accurate heat capacity measurements on powdered samples using a Quantum Design physical property measurement system, J. Chem. Thermodyn., 42, 1107, 10.1016/j.jct.2010.04.008
Shi, 2011, An improved technique for accurate heat capacity measurements on powdered samples using a commercial relaxation calorimeter, J. Chem. Thermodyn., 43, 1263, 10.1016/j.jct.2011.03.018
Dai, 2016, Low-temperature heat capacity and standard thermodynamic functions of b-d-(-)-arabinose (C5H10O5), J. Chem. Thermodyn., 92, 60, 10.1016/j.jct.2015.08.031
Jia, 2017, Heat capacities of some sugar alcohols as phase change materials for thermal energy storage applications, J. Chem. Thermodyn., 115, 233, 10.1016/j.jct.2017.08.004
Calvin, 2017, Heat capacity and thermodynamic functions of γ-Al2O3, J. Chem. Thermodyn., 112, 77, 10.1016/j.jct.2017.04.011
Littleton, 1953, A structure determination of the gluconate ion, Acta Crystallogr., 6, 775, 10.1107/S0365110X53002209
Wieczorek, 1996, Effects of cation interactions on sugar anion conformation in complexes of lactobionate and gluconate with calcium, sodium or potassium, Acta Crystallogr., C52, 1193
Lis, 1984, Structure of sodium D -gluconate, Na[C6H11O7], Acta Crystallogr., C40, 376
Lis, 1984, Structure of lead(II) D -gluconate, Pb[C6H11O7]2, Acta Crystallogr., C40, 374
Jenkins, 2002, Lattice potential energyestimation for complex ionic salts from density measurements, Inorg. Chem., 41, 2364, 10.1021/ic011216k
Glasser, 2008, Internally consistent ion volumes and their application in volume-based thermodynamics, Inorg. Chem., 47, 6195, 10.1021/ic702399u
Di, 2017, Crystal structure and thermodynamic properties of sodium D-gluconate Na[D-C6H11O7](s), J. Therm. Anal. Calorim., 127, 1835, 10.1007/s10973-016-6033-2
Zhong, 2014, Crystal structure, lattice potential energy, and thermochemical properties of a novel compound barium d-gluconate tetrahydrate, J. Chem. Thermodyn., 69, 145, 10.1016/j.jct.2013.10.005
Chase, 1998, 1