Crystal structure and microwave dielectric properties of novel BiMg2MO6 (M = P, V) ceramics with low sintering temperature
Tài liệu tham khảo
Sebastian, 2008, Low loss dielectric materials for LTCC applications: a review, Int Mater Rev, 53, 57, 10.1179/174328008X277524
Reaney, 2006, Microwave dielectric ceramics for resonators and filters in mobile phone networks, J Am Ceram Soc, 89, 2063, 10.1111/j.1551-2916.2006.01025.x
Zhou, 2010, Microwave dielectric ceramics in Li2O-Bi2O3-MoO3 system with ultra-low sintering temperatures, J Am Ceram Soc, 93, 1096, 10.1111/j.1551-2916.2009.03526.x
Umemura, 2005, Microwave dielectric properties of low temperature sintered Mg3(VO4)2 ceramics, J Eur Ceram Soc, 25, 2865, 10.1016/j.jeurceramsoc.2005.03.156
Zhou, 2008, Microwave dielectric characterization of a Li3NbO4 ceramic and its chemical compatibility with silver, J Am Ceram Soc, 91, 4115, 10.1111/j.1551-2916.2008.02764.x
Su, 2014, LiCa3ZnV3O12: a novel low-firing, high Q microwave dielectric ceramic, Ceram Int, 40, 5015, 10.1016/j.ceramint.2013.08.081
Zhang, 2017, A novel temperature stable and high Q microwave dielectric ceramic in Li3(Mg1-xMnx)2NbO6 system, J Mater Sci: Mater Electron, 28, 12220
Zhang, 2018, Microwave dielectric properties of high Q and temperature stable Li3(Mg1-xNix)2NbO6 ceramics, J Mater Sci: Mater Electron, 29, 5057
Sebastian, 2015, Low-loss dielectric ceramic materials and their properties, Int Mater Rev, 60, 392, 10.1179/1743280415Y.0000000007
Li, 2018, Li2AGeO4 (A = Zn, Mg): two novel low-permittivity microwave dielectric ceramics with olivine structure, J Eur Ceram Soc, 38, 1524, 10.1016/j.jeurceramsoc.2017.12.038
Li, 2018, Crystal structure and dielectric properties of germinate melilites Ba2MGe2O7 (M = Mg and Zn) with low permittivity, J Eur Ceram Soc, 38, 1524, 10.1016/j.jeurceramsoc.2017.12.038
Thomas, 2010, Temperature-compensated LiMgPO4: a new glass-free low-temperature cofired ceramic, J Am Ceram Soc, 93, 3828, 10.1111/j.1551-2916.2010.03934.x
Hu, 2015, Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics, J Alloys Compd, 651, 290, 10.1016/j.jallcom.2015.08.104
Xia, 2017, Microwave dielectric ceramic of LiZnPO4 for LTCC applications, J Mater Sci: Mater Electron, 28, 12026
Xia, 2017, Low-temperature co-fired LiMnPO4-TiO2 ceramics with near-zero temperature coefficient of resonant frequency, J Mater Sci: Mater Electron, 28, 13970
Luo, 2016, A novel low-firing BiZn2VO6 microwave dielectric ceramic with low loss, J Mater Sci: Mater Electron, 27, 210
Xun, 2002, Synthesis and structure of new BiMn2MO6 compounds where M = P, As, or V, J Solid State Chem, 167, 245, 10.1006/jssc.2002.9654
Huang, 1992, Synthesis, crystal structure, and optical properties of a new bismuth magnesium vanadate: BiMg2VO6, J Solid State Chem, 100, 170, 10.1016/0022-4596(92)90168-U
Radosavljevic, 2000, Variable temperature X-Ray diffraction study of bismuth magnesium vanadate, BiMg2VO6. J. Solid. State. Chem., 149, 143, 10.1006/jssc.1999.8512
Nunes, 2015, Bismuth zincvanadate, BiZn2VO6: new crystal structure type and electronic structure, J Solid State Chem, 222, 12, 10.1016/j.jssc.2014.10.036
Chen, 2020, Elastic anisotropy and thermodynamics properties of BiCu2PO6, BiZn2PO6 and BiPb2PO6 ceramics materials from first-principles calculations, Ceram Int, 46, 8575, 10.1016/j.ceramint.2019.12.089
Zhang, 2020, A first principles investigation on the influence of transition-metal elements on the structural, mechanical, and anisotropic properties of CaM2Al20 intermetallics, J Mol Graph Model, 96, 107509, 10.1016/j.jmgm.2019.107509
Chen, 2021, The vacancy defects and oxygen atoms occupation effects on mechanical and electronic properties of Mo5Si3 silicides, Commun Theor Phys, 10.1088/1572-9494/abe367
Xie, 2015, Microwave dielectric properties of BiMg2VO6 ceramic with low sintering temperature, J Inorg Mater, 30, 202
Xie, 2016, Synthesis, low temperature co-firing, and microwave dielectric properties of two ceramics BiM2VO6 (M = Cu, Ca), Ceram Int, 42, 989, 10.1016/j.ceramint.2015.08.171
Ketatni, 2000, Crystal structure of BiZn2PO6. Filiation between related compounds, J Solid State Chem, 153, 48, 10.1006/jssc.2000.8738
Li, 2016, Li4WO5: a temperature stable low-firing microwave dielectric ceramic with rock salt structure, J Eur Ceram Soc, 36, 243, 10.1016/j.jeurceramsoc.2015.09.033
Yoon, 2006, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds, J Eur Ceram Soc, 26, 2051, 10.1016/j.jeurceramsoc.2005.09.058
Shannon, 1992, Dielectric constants of silicate garnets and oxide additivity rule, Am Mineral, 77, 94
Shannon, 1993, Dielectric polarizabilities of ions in oxides and fluorides, J Appl Phys, 73, 348, 10.1063/1.353856
Sandderson, 1968, Multiple and single bond energies in inorganic molecules, Inorg. Nucl. Chem., 30, 375, 10.1016/0022-1902(68)80464-6
Sandderson, 1971
Sandderson, 1983, Electronegativity and bond energy, J Am Chem Soc, 105, 2259, 10.1021/ja00346a026
Luo, 2007
Meng, 1998, Dependence of superconducting temperature on chemical bond parameters in YBa2Cu3O6+δ (δ= 0-1), J Phys Chem Solid, 59, 633, 10.1016/S0022-3697(97)00236-9
Zhang, 2015, Effects of structural characteristics on microwave dielectric properties of Li2Mg(Ti1-xMnx)3O8 ceramics, J Alloys Compd, 647, 386, 10.1016/j.jallcom.2015.05.182