Crystal structure and microwave dielectric properties of novel BiMg2MO6 (M = P, V) ceramics with low sintering temperature

Journal of Materiomics - Tập 7 - Trang 1344-1351 - 2021
Ping Zhang1, Manman Hao1, Mi Xiao1, Zhentai Zheng2
1School of Electrical and Information Engineering and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
2School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China

Tài liệu tham khảo

Sebastian, 2008, Low loss dielectric materials for LTCC applications: a review, Int Mater Rev, 53, 57, 10.1179/174328008X277524 Reaney, 2006, Microwave dielectric ceramics for resonators and filters in mobile phone networks, J Am Ceram Soc, 89, 2063, 10.1111/j.1551-2916.2006.01025.x Zhou, 2010, Microwave dielectric ceramics in Li2O-Bi2O3-MoO3 system with ultra-low sintering temperatures, J Am Ceram Soc, 93, 1096, 10.1111/j.1551-2916.2009.03526.x Umemura, 2005, Microwave dielectric properties of low temperature sintered Mg3(VO4)2 ceramics, J Eur Ceram Soc, 25, 2865, 10.1016/j.jeurceramsoc.2005.03.156 Zhou, 2008, Microwave dielectric characterization of a Li3NbO4 ceramic and its chemical compatibility with silver, J Am Ceram Soc, 91, 4115, 10.1111/j.1551-2916.2008.02764.x Su, 2014, LiCa3ZnV3O12: a novel low-firing, high Q microwave dielectric ceramic, Ceram Int, 40, 5015, 10.1016/j.ceramint.2013.08.081 Zhang, 2017, A novel temperature stable and high Q microwave dielectric ceramic in Li3(Mg1-xMnx)2NbO6 system, J Mater Sci: Mater Electron, 28, 12220 Zhang, 2018, Microwave dielectric properties of high Q and temperature stable Li3(Mg1-xNix)2NbO6 ceramics, J Mater Sci: Mater Electron, 29, 5057 Sebastian, 2015, Low-loss dielectric ceramic materials and their properties, Int Mater Rev, 60, 392, 10.1179/1743280415Y.0000000007 Li, 2018, Li2AGeO4 (A = Zn, Mg): two novel low-permittivity microwave dielectric ceramics with olivine structure, J Eur Ceram Soc, 38, 1524, 10.1016/j.jeurceramsoc.2017.12.038 Li, 2018, Crystal structure and dielectric properties of germinate melilites Ba2MGe2O7 (M = Mg and Zn) with low permittivity, J Eur Ceram Soc, 38, 1524, 10.1016/j.jeurceramsoc.2017.12.038 Thomas, 2010, Temperature-compensated LiMgPO4: a new glass-free low-temperature cofired ceramic, J Am Ceram Soc, 93, 3828, 10.1111/j.1551-2916.2010.03934.x Hu, 2015, Dielectric relaxation and microwave dielectric properties of low temperature sintering LiMnPO4 ceramics, J Alloys Compd, 651, 290, 10.1016/j.jallcom.2015.08.104 Xia, 2017, Microwave dielectric ceramic of LiZnPO4 for LTCC applications, J Mater Sci: Mater Electron, 28, 12026 Xia, 2017, Low-temperature co-fired LiMnPO4-TiO2 ceramics with near-zero temperature coefficient of resonant frequency, J Mater Sci: Mater Electron, 28, 13970 Luo, 2016, A novel low-firing BiZn2VO6 microwave dielectric ceramic with low loss, J Mater Sci: Mater Electron, 27, 210 Xun, 2002, Synthesis and structure of new BiMn2MO6 compounds where M = P, As, or V, J Solid State Chem, 167, 245, 10.1006/jssc.2002.9654 Huang, 1992, Synthesis, crystal structure, and optical properties of a new bismuth magnesium vanadate: BiMg2VO6, J Solid State Chem, 100, 170, 10.1016/0022-4596(92)90168-U Radosavljevic, 2000, Variable temperature X-Ray diffraction study of bismuth magnesium vanadate, BiMg2VO6. J. Solid. State. Chem., 149, 143, 10.1006/jssc.1999.8512 Nunes, 2015, Bismuth zincvanadate, BiZn2VO6: new crystal structure type and electronic structure, J Solid State Chem, 222, 12, 10.1016/j.jssc.2014.10.036 Chen, 2020, Elastic anisotropy and thermodynamics properties of BiCu2PO6, BiZn2PO6 and BiPb2PO6 ceramics materials from first-principles calculations, Ceram Int, 46, 8575, 10.1016/j.ceramint.2019.12.089 Zhang, 2020, A first principles investigation on the influence of transition-metal elements on the structural, mechanical, and anisotropic properties of CaM2Al20 intermetallics, J Mol Graph Model, 96, 107509, 10.1016/j.jmgm.2019.107509 Chen, 2021, The vacancy defects and oxygen atoms occupation effects on mechanical and electronic properties of Mo5Si3 silicides, Commun Theor Phys, 10.1088/1572-9494/abe367 Xie, 2015, Microwave dielectric properties of BiMg2VO6 ceramic with low sintering temperature, J Inorg Mater, 30, 202 Xie, 2016, Synthesis, low temperature co-firing, and microwave dielectric properties of two ceramics BiM2VO6 (M = Cu, Ca), Ceram Int, 42, 989, 10.1016/j.ceramint.2015.08.171 Ketatni, 2000, Crystal structure of BiZn2PO6. Filiation between related compounds, J Solid State Chem, 153, 48, 10.1006/jssc.2000.8738 Li, 2016, Li4WO5: a temperature stable low-firing microwave dielectric ceramic with rock salt structure, J Eur Ceram Soc, 36, 243, 10.1016/j.jeurceramsoc.2015.09.033 Yoon, 2006, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds, J Eur Ceram Soc, 26, 2051, 10.1016/j.jeurceramsoc.2005.09.058 Shannon, 1992, Dielectric constants of silicate garnets and oxide additivity rule, Am Mineral, 77, 94 Shannon, 1993, Dielectric polarizabilities of ions in oxides and fluorides, J Appl Phys, 73, 348, 10.1063/1.353856 Sandderson, 1968, Multiple and single bond energies in inorganic molecules, Inorg. Nucl. Chem., 30, 375, 10.1016/0022-1902(68)80464-6 Sandderson, 1971 Sandderson, 1983, Electronegativity and bond energy, J Am Chem Soc, 105, 2259, 10.1021/ja00346a026 Luo, 2007 Meng, 1998, Dependence of superconducting temperature on chemical bond parameters in YBa2Cu3O6+δ (δ= 0-1), J Phys Chem Solid, 59, 633, 10.1016/S0022-3697(97)00236-9 Zhang, 2015, Effects of structural characteristics on microwave dielectric properties of Li2Mg(Ti1-xMnx)3O8 ceramics, J Alloys Compd, 647, 386, 10.1016/j.jallcom.2015.05.182