Crystal structure and magnetic properties study on barium hexaferrite (BHF) and cobalt zinc ferrite (CZF) in composites

Solid State Sciences - Tập 113 - Trang 106529 - 2021
Murli Kumar Manglam1, Jyotirekha Mallick1, Suman Kumari1, Rabichandra Pandey1, Manoranjan Kar1
1Department of Physics, Indian Institute of Technology Patna, Bihta, Patna 801106, India

Tài liệu tham khảo

Bader, 2006, Colloquium : opportunities in nanomagnetism, Rev. Mod. Phys., 78, 1, 10.1103/RevModPhys.78.1 Singh, 2014, Structural , dielectric and magnetic properties of nanocrystalline BaFe12O19 hexaferrite processed via sol-gel technique, Adv. Mat. Lett., 5, 447, 10.5185/amlett.2014.554 Wang, 2010, Multiferroic magnetoelectric composite nanostructures, NPG Asia Mater., 2, 61, 10.1038/asiamat.2010.32 Kumar, 2018, Surface anisotropy induced in BaTiO3- CoFe2O4 (BTO- CFO) nanocomposites, J. Magn. Magn Mater., 465, 93, 10.1016/j.jmmm.2018.05.061 Hue, 2013, Synthesis, structure, and magnetic properties of SrFe12O19/La(1-x)CaxMnO3 hard/Soft composites, J. Appl. Phys., 114, 123901, 10.1063/1.4821971 Algarou, 2020, Magnetic and microwave properties of SrFe12O19/MCe0.04Fe1.96O4 (M=Cu, Ni, Mn, Co and Zn) hard/Soft nanocomposites, J. Mater. Res. Technol., 10.1016/j.jmrt.2020.03.113 Quesada, 2014, On the origin of remanance enhancement in exchange – uncoupled CoFe2O4 based nanocomposites, Appl. Phys. Lett., 105, 202405, 10.1063/1.4902351 Raidongia, 2010, Multiferroic and magnetoelectric properties of core-shell CoFe2O4 @ BaTiO3 nanocomposite, Appl. Phys. Lett., 97, 10.1063/1.3478231 Kumar, 2019, Lattice strain mediated dielectric and magnetic properties in La-doped barium hexaferrite, J. Magn. Magn Mater., 473, 312, 10.1016/j.jmmm.2018.10.085 Tatarcheck, 2017, Structural, optical and magnetic properties of Zn –doped CoFe2O4 nanoparticles, Nanoscale Research Letters, 12, 141, 10.1186/s11671-017-1899-x de Biasi, 2012, A simple model for magnetocrystalline anisotropy in mixed ferrite nanocomposites, Physica B, 407, 3893, 10.1016/j.physb.2012.06.017 Kneller, 1991, The exchange spring magnet: a new material principle for permanent magnet, IEEE Trans. of magnetic, 27, 4, 10.1109/20.102931 Soares, 2014, Exchange- bias and exchange –spring coupling in magnetic core-shell nanoparticle, J. Magn. Magn Mater., 350, 69, 10.1016/j.jmmm.2013.09.040 Roy, 2009, Enhancement of (BH)max in hard-soft ferrite nanocomposite using exchange spring mechanism, J. Appl. Phys., 106, 10.1063/1.3213341 Roy, 2013, Investigation on non-exchange spring and exchange spring behavior: a first-order reversal curve analysis, Appl. Phys. Lett., 103, 222406, 10.1063/1.4836015 Tian, 2013, Anomalous exchange bias at collinear/non-collinear spin interface, Sci. Rep., 3, 1094, 10.1038/srep01094 Shan, 2002, Energy Barrier and magnetic properties of exchange – coupled hard-soft bilayer, IEEE Trans. Magn., 38, 5, 10.1109/TMAG.2002.803226 Kumar, 2020, Magnetic interaction between BHF (BaFe12O19) and BTO (BaTiO3) in BTO-BHF nanocomposites, J. Magn. Magn Mater., 498, 166100, 10.1016/j.jmmm.2019.166100 Kumar, 2018, Magnetic interaction between ferrimagnetic CoFe2O4 and antiferromagnetic NiO in nanocomposites, Physica B: Physics of condence matter, 530, 114, 10.1016/j.physb.2017.11.017 Pandey, 2020, Surface magnetic interaction between Bi0.85La0.15FeO3 and BaFe12O19 nanomaterials in (1-x) Bi0.85La0.15FeO3–(x) BaFe12O19 nanocomposites, J. Magn. Magn Mater., 502, 166862, 10.1016/j.jmmm.2020.166862 Roy, 2009, Observation of exchange spring behaviour in hard-soft ferrite nanocomposite, J. Magn. Magn Mater., 321, L11, 10.1016/j.jmmm.2008.09.017 Algarou, 2019, Exchange coupling effect in hard/soft SrTb.01Tm.01Fe11.98O19/AFe204 (Where A- Co, Ni, Zn, Cu, and Mn) Composite, Ceramic international, 11, 201 Pahwa, 2019, Interfacial exchange coupling driven magnetic and microwave properties of BaFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite, J. Mang. Magn. Mater., 484, 61, 10.1016/j.jmmm.2019.03.127 Somaiah, 2012, Magnetic and magnetoelastic properties of Zn doped cobalt ferrite CoFe2-xZnxO4 (x=0, 0.1,0.2 and 0.3.), J. Magn. Magn. Matr., 324, 2286, 10.1016/j.jmmm.2012.02.116 Kumar, 2013, Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite, J. Alloys Compd., 551, 72, 10.1016/j.jallcom.2012.10.009 Manglam, 2020, Lattice strain caused magnetism and magnetocrystalline anisotropy in Zn modified barium hexaferrite, Physica B, 588, 412200, 10.1016/j.physb.2020.412200 Dahal, 2019, Synthesis and magnetic properties of 4:1 hard-soft SrFe12O19- La1-x SrxMnO3 nanocomposite prepared by auto combustion method, AIP Adv., 9, 10.1063/1.5096530 Pandey, 2019, Correlation between lattice strain and physical (magnetic, dielectric and magnetodielectric) properties of perovskite –spinel (Bi0.85La0.15FeO3)(1−x)–(NiFe2O4)(x) composites, J. Appl. Phys., 125, 244105, 10.1063/1.5063775 Vegard, 1921, The constitution of mixed crystal and space occupied by atoms, Z. Phys., 5, 17, 10.1007/BF01349680 Mazumdar, 2016, Tuning of magnetoelectric coupling in (1−y)Bi0.8Dy0.2FeO3–yNi0.5Zn0.5Fe2O4 multiferroic composites, J. Magn. Magn. Matr., 401, 443, 10.1016/j.jmmm.2015.10.051 Pahwa, 2017, Structural, magnetic and microwave properties of exchange coupled and non-exchange couple BaFe12O19/NiFe12O19 nanocomposite, J. Alloys Compd., 725, 1175, 10.1016/j.jallcom.2017.07.220 Stoner, 1948, A mechanism of magnetic hysteresis in the heterogeneous alloy, Phil. Trans. Roy. Soc. Lond.: Math. Phys. Eng. Sci., 240, 599, 10.1098/rsta.1948.0007 Pandey, 2018, Crystal structure, magnetic and dielectric properties of (1-x) BiFe0.80Ti0.20O3-(x)Co0.5Ni0.5Fe2O4 multiferroic composites, J. Alloys Compd., 762, 668, 10.1016/j.jallcom.2018.05.198 Kumar, 2014, Low temperature and high magnetic field dependence and magnetic properties of nanocrystalline cobalt ferrite, J. Supercond. Nov. Magnetism, 27, 1677, 10.1007/s10948-014-2519-y Kumari, 2019, Effect of annealing temperature on morphology and magnetic properties of cobalt ferrite nanofibers, Mater. Res. Express, 6, 1250a3, 10.1088/2053-1591/ab5fa1