Crystal structure and investigation of Bi2TeO6·nH2O (0 ≤ n ≤ $${\raise0.5ex\hbox{$\scriptstyle 2$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 3$}}$$ ): natural and synthetic montanite
Tóm tắt
The crystal structure of montanite has been determined using single-crystal X-ray diffraction on a synthetic sample, supported by powder X-ray diffraction (PXRD), electron microprobe analysis (EPMA) and thermogravimetric analyses (TGA). Montanite was first described in 1868 as Bi2TeO6·nH2O (n = 1 or 2). The determination of the crystal structure of synthetic montanite (refined composition Bi2TeO6·0.22H2O) has led to the reassignment of the formula to Bi2TeO6·nH2O where 0 ≤ n ≤
$${\raise0.5ex\hbox{$\scriptstyle 2$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 3$}}$$
rather than the commonly reported Bi2TeO6·2H2O. This change has been accepted by the IMA–CNMNC, Proposal 22-A. The PXRD pattern simulated from the crystal structure of synthetic montanite is a satisfactory match for PXRD scans collected on both historical and recent natural samples, showing their equivalence. Two specimens attributed to the original discoverer of montanite (Frederick A. Genth) from the cotype localities (Highland Mining District, Montana and David Beck’s mine, North Carolina, USA) have been designated as neotypes. Montanite crystallises in space group P
$$\overline{6 }$$
, with the unit-cell parameters a = 9.1195(14) Å, c = 5.5694(8) Å, V = 401.13(14) Å3, and three formula units in the unit cell. The crystal structure of montanite is formed from a framework of BiOn and TeO6 polyhedra. Half of the Bi3+ and all of the Te6+ cations are coordinated by six oxygen atoms in trigonal-prismatic arrangements (the first example of this configuration reported for Te6+), while the remaining Bi3+ cations are coordinated by seven O sites. The H2O groups in montanite are structurally incorporated into the network of cavities formed by the three-dimensional framework, with other cavity space occupied by the stereoactive 6s2 lone pair of Bi3+ cations. While evidence for a supercell was observed in synthetic montanite, the subcell refinement of montanite adequately indexes all reflections in the PXRD patterns observed in all natural montanite samples analysed in this study, verifying the identity of montanite as a mineral.
Tài liệu tham khảo
Brugger J, Liu W, Etschmann B, Mei Y, Sherman DM, Testemale D (2016) A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? Chem Geol 447:219–253. https://doi.org/10.1016/j.chemgeo.2016.10.021
Bruker AXS (2016) APEX-3, SAINT and SADABS. Bruker AXS, Madison
Christy AG (2015) Causes of anomalous mineralogical diversity in the periodic table. Mineral Mag 79:33–50. https://doi.org/10.1180/minmag.2015.079.1.04
Christy AG, Mills SJ, Kampf AR (2016) A review of the structural architecture of tellurium oxycompounds. Mineral Mag 80:415–545. https://doi.org/10.1180/minmag.2016.080.093
Ciobanu CL, Cook NJ, Pring A (2005) Bismuth tellurides as gold scavengers, Mineral deposit research: meeting the global challenge. Springer, Berlin, Heidelberg, pp 1383–1386. https://doi.org/10.1007/3-540-27946-6_352
Ciobanu CL, Cook NJ, Pring A, Brugger J, Danyushevsky LV, Shimizu M (2009) ‘Invisible gold’ in bismuth chalcogenides. Geochim Cosmochim Acta 73:1970–1999. https://doi.org/10.1016/j.gca.2009.01.006
Cook NJ, Ciobanu CL, Slattery AD, Wade BP, Ehrig K (2021) The Mixed-Layer Structures of Ikunolite, Laitakarite, Joséite-B and Joséite-A. Minerals 11:920. https://doi.org/10.3390/min11090920
Dunn PJ, Mandarino JA (1987) Formal definitions of type mineral specimens. Amer Mineral 72:1269–1270
Embrey PG, Hey MH (1970) “Type” specimens in mineralogy. Mineral Rec 1:102–104
Feng D, Li X, Wang X, Li J, Sun F, Sun Z, Zhang T, Li P, Chen Y, Zhang X (2018) Water adsorption and its impact on the pore structure characteristics of shale clay. Appl Clay Sci 155:126–138. https://doi.org/10.1016/j.clay.2018.01.017
Genth FA (1868) Art XXXIII.—Contributions to mineralogy—No VII. Amer J Sci Arts 95:305–321
Genth FA (1877) Contributions from the Laboratory of the University of Pennsylvania. No. XI. On Some Tellurium and Vanadium Minerals. Proc Amer Phil Soc 17:113–123
Golebiowska B, Pieczka A, Parafiniuk J (2011) New data on weathering of bismuth sulfotellurides at Rędziny, Lower Silesia, Southwestern Poland. Mineral Soc Pol Mag 38:95–96
Grey IE (2020) Kagomé networks of octahedrally coordinated metal atoms in minerals: relating different mineral structures through octahedral tilting. Mineral Mag 84:640–652. https://doi.org/10.1180/mgm.2020.72
Grice JD (1989) The crystal structure of magnolite, Hg1+2Te4+O3. Can Mineral 27:133–136
Haidinger W (1845) Zweite Klasse: Geogenide. II. Ordnung. Baryte. VIII. Antimonbaryt. Tellurit. Handbuch der bestimmenden Mineralogie. Braumüller and Seidel, Vienna, pp 499–506
Hou H, Takamatsu T, Koshikawa M, Hosomi M (2005) Migration of silver, indium, tin, antimony, and bismuth and variations in their chemical fractions on addition to uncontaminated soils. Soil Sci 170:624–639. https://doi.org/10.1097/01.ss.0000178205.35923.66
Housecroft CE, Sharpe AG (2004) Inorganic chemistry, 2nd edn. Prentice Hall, Hoboken, p 725
Kampf AR, Mills SJ, Housley RM, Rossman GR, Marty J, Thorne B (2013) Lead-tellurium oxysalts from Otto Mountain near Baker, California: X. Bairdite, Pb2Cu4Te6+2O10(OH)2(SO4)(H2O), a new mineral with thick HCP layers. Am Miner 98:1315–1321. https://doi.org/10.2138/am.2013.4389
Kampf AR, Housley RM, Rossman GR, Marty J, Chorazewicz M (2018) Bodieite, Bi3+2(Te4+O3)2(SO4), a New Mineral from the Tintic District, Utah, and the Masonic District, California, USA. Can Mineral 56:1–10. https://doi.org/10.3749/canmin.1800046
Kazachenko VT, Fat’yanov II, Chubarov VM (1980) Discovery of a lead-containing variety of montanite. USSR Acad Sci Rep 255:968–971
Keim MF, Staude S, Marquardt K, Bachmann K, Opitz J, Markl G (2018) Weathering of Bi-bearing tennantite. Chem Geol 499:1–25. https://doi.org/10.1016/j.chemgeo.2018.07.032
Krivovichev SV (2012) Derivation of bond-valence parameters for some cation-oxygen pairs on the basis of empirical relationships between r0 and b. Z Kristallogr Crystal Mater 227:575–579. https://doi.org/10.1524/zkri.2012.1469
Larsen ES (1921) The Microscopic Determination of the Nonopaque Minerals. Issue 679 of Geological Survey bulletin. Unit Stat Geol Surv, p. 275.
Laugier J, Bochu B (2004) Chekcell: graphical powder indexing cell and space group assignment software.
Leverett P, McKinnon AR, Williams PA (2003) Mineralogy of the oxidised zone at the New Cobar orebody. Adv Regol Conf 267–270
Mao J, Wang Y, Ding T, Chen Y, Wei J, Yin J (2002) Dashuigou tellurium deposit in Sichuan Province, China: S, C, O, and H isotope data and their implications on hydrothermal mineralization. Res Geol 52:15–23. https://doi.org/10.1111/j.1751-3928.2002.tb00113.x
Mills SJ, Christy AG (2013) Revised values of the bond-valence parameters for TeIV−O, TeVI−O and TeIV−Cl. Acta Crystallogr B 69:145–149. https://doi.org/10.1107/S2052519213004272
Mills SJ, Dunstan MA, Christy AG (2016) YCu(TeO3)2(NO3)(H2O)3: a novel layered tellurite. Acta Crystallogr E72:1138–1142. https://doi.org/10.1107/S2056989016011464
Mindat.org (2021) Montanite. Retrieved 22 December 2021. https://www.mindat.org/min-2760.html
Missen OP, Ram R, Mills SJ, Etschmann B, Reith F, Shuster J, Smith DJ, Brugger J (2020) Love is in the Earth: a review of tellurium (bio)geochemistry in surface environments. Ear Sci Rev 204:103150. https://doi.org/10.1016/j.earscirev.2020.103150
Missen OP, Mills SJ, Canossa S, Hadermann J, Nénert G, Weil M, Libowitzky E, Housley RM, Artner W, Kampf AR, Rumsey MS, Spratt J, Momma K, Dunstan MA (2022) Polytypism in mcalpineite: a study of natural and synthetic Cu3TeO6. Acta Crystallogr B 78:20–32. https://doi.org/10.1107/S2052520621013032
Miyawaki R, Hatert F, Pasero M, Mills SJ (2022) Newsletter 66. Mineral Mag 86(2):359-362. https://doi.org/10.1180/mgm.2022.33
Nénert G, Missen OP, Lian H, Weil M, Blake GR, Kampf AR, Mills SJ (2020) Crystal structure and thermal behavior of Bi6Te2O15: investigation of synthetic and natural pingguite. Phys Chem Mineral 47:1–8. https://doi.org/10.1007/s00269-020-01121-7
Nickel EH, Grice JD (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, 1998. Mineral Petrol 64:237–263
Pasero M (2021) The new IMA list of minerals. http://cnmnc.main.jp/. Accessed 10 June 2021
Pokrovskii PV, Yunikov BA (1967) Montanite and tetradymite of the Novo-Boevskoe wolframite deposit. Mineraly Izverzennych Gornych Porod I Rud Urala (Minerals of igneous rocks and ores of the Urals), Leningrad, USSR, pp 97–99
Roberts AC, Bonardi M, Grice JD, Ercit TS, Pinch WW (1989) A restudy of magnolite, Hg1+2Te4+O3, from Colorado. Can Mineral 27:129–131
Rossell HJ, Leblanc M, Ferey G, Bevan DJM, Simpson DJ, Taylor MR (1992) On the crystal structure of Hg1+2Te4+O3. Aust J Chem 45:1415–1425. https://doi.org/10.1071/CH9921415
Rumsey MS, Missen OP, Mills SJ, McCulloch R (2022) Mineral Collections, Historical Resources and Science Collide: The type localities and specimens of the rare US mineral montanite. Can Mineral (in preparation)
Sejkora J, Litochleb J, Černý P, Ozdín D (2004) Bi-Te mineral association from Župkov (Vtáčnik Mts., Slovak Republic). Mineral Slov 36:303
Sheldrick GM (2015a) SHELXT-integrated space-group and crystal structure determination. Acta Crystallogr A 71:3–8. https://doi.org/10.1107/S2053273314026370
Sheldrick GM (2015b) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8. https://doi.org/10.1107/S2053229614024218
Spiridonov EM, Demina L (1984) Smirnite–Bi2TeO5, a new mineral. USSR Acad Sci Rep 278:199–202
Spiridonov E, Petrova I, Demina L, Antonyan G (1987) Chekhovichite-Bi2Te4O11, a new mineral. Vest Moskov Univ Geol 42:71–76
Tooth B, Ciobanu CL, Green L, O’Neill B, Brugger J (2011) Bi-melt formation and gold scavenging from hydrothermal fluids: an experimental study. Geochim Cosmochim Acta 75:5423–5443. https://doi.org/10.1016/j.gca.2011.07.020
Untenecker H, Hoppe R (1986) Die Koordinationszahl 5 bei Telluraten: Cs2K2[TeO5]. J Less Comm Metal 124:29–40. https://doi.org/10.1016/0022-5088(86)90474-1
Weller MT, Pack MJ, Binsted N, Dann SE (1999) The structure of cesium tellurate(VI) by combined EXAFS and powder X-ray Diffraction. J Alloy Comp 282:76–78. https://doi.org/10.1016/S0925-8388(98)00849-4
Williams SA, Cesbron FP (1985) Yecoraite Fe3Bi5(TeO3)(TeO4)2O9·nH2O a new mineral from Sonora, Mexico. Bol Mineral 1:10–16
Wisser T, Hoppe R (1990) Ein Oxotellurat (VI) neuen Typs: Rb6[TeO5][TeO4]. Z Anorg Allg Chem 584:105–113. https://doi.org/10.1002/zaac.19905840108
Yong X, Li D, Wang G, Deng M, Chen N, Wang S (1989) A study of chiluite—a new mineral in Chilu, Fujian, China. Acta Mineral Sin 9:9–14
Zhifu S, Keding L, Falan T, Jingyi Z (1994) Pingguite: a new bismuth tellurite mineral. Acta Mineral Sin 14:315