Crystal structure, Raman spectra, infrared spectra and microwave dielectric properties of Li 2 Mg 3 Ti 1-X (Mg 1/3 Ta 2/3 ) X O 6 (0 ≤ x ≤ 0.2) solid solution ceramics
Tài liệu tham khảo
Vanderah, 2002, Talking ceramics, Science, 298, 1182, 10.1126/science.1078489
Liu, 2017, Novel thermal-stable low temperature sintered Ba2LiMg2V3O12 microwave dielectric ceramics with ZnO-P2O5-MnO2 glass addition, Mater. Res. Bull., 93, 16, 10.1016/j.materresbull.2017.04.039
Pang, 2017, High quality microwave dielectric ceramic sintered at extreme-low temperature below 200° and co-firing with base metal, J. Eur. Ceram. Soc., 37, 3073, 10.1016/j.jeurceramsoc.2017.03.034
Kim, 2016, Intrinsic factors affecting the microwave dielectric properties of Mg2Ti1-x(Mg1/3Sb2/3)xO4 ceramic, Ceram. Int., 42, 15035, 10.1016/j.ceramint.2016.06.154
Kim, 2017, Effect of substituting Ti sites with (MgxNb0.8–0.4x)4+ on the microwave dielectric properties of Mg2TiO4 ceramics, Ceram. Int., 43, S321, 10.1016/j.ceramint.2017.05.297
Jo, 2016, Effects of structural characteristics on microwave dielectric properties of MgTi1-x(Mg1/3B2/3)xO3 (B = Nb, Ta), J. Eur. Ceram. Soc., 36, 1399, 10.1016/j.jeurceramsoc.2015.12.033
Sun, 2018, A novel LiNb0.6Ti0.5O3 microwave dielectric ceramic with Ca substitutions, Mater. Lett., 210, 275, 10.1016/j.matlet.2017.09.042
Zhang, 2018, Ultra-low temperature sintering and microwave dielectric properties of a novel temperature stable Na2Mo2O7-Na0.5Bi0.5MoO4 ceramic, J. Eur. Ceram. Soc., 38, 813, 10.1016/j.jeurceramsoc.2017.07.021
Zhang, 2018, Temperature stability, low loss and defect relaxation of MgO-TiO2 microwave dielectric ceramics modified by Ca0.8Sr0.2TiO3, Ceram. Int., 44, 141, 10.1016/j.ceramint.2017.09.149
Xia, 2018, Manufacturing a high performance film of CaO-B2O3-SiO2 glass-ceramic powder with surface modification for LTCC application, J. Eur. Ceram. Soc., 38, 253, 10.1016/j.jeurceramsoc.2017.08.003
Chen, 2018, Structure and microwave dielectric properties of SrLa[Al1-x(Mg0.5Ti0.5)x]O4 (x = 0.2–0.8) ceramics, Ceram. Int., 44, 1984, 10.1016/j.ceramint.2017.10.142
Fu, 2016, New high Q low-fired Li2Mg3TiO6 microwave dielectric ceramics with rock salt structure, Mater. Lett., 164, 436, 10.1016/j.matlet.2015.11.046
Fu, 2016, Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr), J. Eur. Ceram. Soc., 36, 625, 10.1016/j.jeurceramsoc.2015.10.040
Wu, 2016, Correlations between crystal structure and dielectric properties of high-Q materials in rock-salt structure Li2O-MgO-BO2 (B = Ti, Sn, Zr) systems at microwave frequency, RSC Adv., 6, 47443, 10.1039/C6RA06624K
Zhou, 2017, Phase structure, sintering behavior and adjustable microwave dielectric properties of Mg1-xLi2xTixO1+2x solid solution ceramics, J. Alloys Compd., 696, 1255, 10.1016/j.jallcom.2016.12.114
Zhang, 2016, Microwave dielectric properties of low loss Li2(Mg0.95A0.05)3TiO6 (A = Ca2+, Ni2+, Zn2+, Mn2+) ceramics system, J. Alloys Compd., 689, 246, 10.1016/j.jallcom.2016.07.198
Fang, 2017, Temperature stable and high-Q microwave dielectric ceramics in the Li2Mg3-xCaxTiO6 system (x = 0.00–0.18), Ceram. Int., 43, 1682, 10.1016/j.ceramint.2016.08.055
Pan, 2017, Relationships between crystal structure and microwave dielectric properties of Li2(Mg1-xCox)3TiO6 (0 ≤ x ≤ 0.4) ceramics, Ceram. Int., 43, 15018, 10.1016/j.ceramint.2017.08.026
Xiang, 2018, A reduced sintering temperature and improvement in the microwave dielectric properties of Li2Mg3TiO6 through Ge substitution, Ceram. Int., 44, 5817, 10.1016/j.ceramint.2017.12.167
Yang, 2018, Effects of Ti-substitution on the crystal structures, micro-structures and microwave dielectric properties of Li2Mg3Zr1-xTixO6 (0 ≤ x ≤ 1) ceramics, Ceram. Int., 44, 5155, 10.1016/j.ceramint.2017.12.119
Fu, 2017, Novel temperature stable Li2Mg3TiO6-SrTiO3 composite ceramics with high Q for LTCC applications, Mater. Chem. Phys., 200, 264, 10.1016/j.matchemphys.2017.07.073
Ma, 2017, Ultralow-fired Li2Mg3TiO6-Ca0.8Sr0.2TiO3 composite ceramics with temperature stable at microwave frequency, J. Alloys Compd., 709, 299, 10.1016/j.jallcom.2017.03.103
Fu, 2017, The effect of sintering agents on the sinterability and dielectric properties of Li2Mg3TiO6 ceramics, Ferroelectrics, 510, 50, 10.1080/00150193.2017.1326803
Chen, 2013, Microstructure and microwave dielectric properties of Li2Ti1-x(Zn1/3Nb2/3)xO3 ceramics, Ceram. Int., 39, 4887, 10.1016/j.ceramint.2012.11.081
Zhang, 2016, Structure, microwave dielectric properties, and low-temperature sintering of acceptor/donor codoped Li2Ti1-x(Al0.5Nb0.5)xO3 ceramics, J. Am. Ceram. Soc., 99, 825, 10.1111/jace.14055
Bian, 2018, Structural evolution, grain growth kinetics and microwave dielectric properties of Li2Ti1-x(Mg1/3Nb2/3)xO3, J. Eur. Ceram. Soc., 38, 599, 10.1016/j.jeurceramsoc.2017.08.038
Jo, 2016, Enhanced quality factor of MgTiO3 ceramics by isovalent Ti-site substitution, Ceram. Int., 42, 5479, 10.1016/j.ceramint.2015.12.096
Roisnel, 2001, WinPLOTR, a window tool for powder diffraction pattern analysis, Mater. Sci. Forum, 378–381, 118, 10.4028/www.scientific.net/MSF.378-381.118
Hakki, 1960, A dielectric resonator method of measuring inductive capacities in the millimeter range, IEEE Trans. Microw. Theory Tech., 8, 402, 10.1109/TMTT.1960.1124749
Courtney, 1970, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators, IEEE. Trans. Microw. Theory Tech., 18, 476, 10.1109/TMTT.1970.1127271
Tabuchi, 1998, Magnetic properties of metastable lithium iron oxides obtained by solvothermal/hydrothermal reaction, J. Solid State Chem., 141, 5541, 10.1006/jssc.1998.8018
Brown, 1973, Empirical bond-strength-bond-length curves for oxides, Acta Cryst., A29, 266, 10.1107/S0567739473000689
Brown, 1985, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database, Acta Cryst., B41, 244, 10.1107/S0108768185002063
Xu, 2014, Structural evolution and microwave dielectric properties of MgO-LiF co-doped Li2TiO3 ceramics for LTCC applications, Ceram. Int., 40, 15191, 10.1016/j.ceramint.2014.06.134
Bian, 2016, Structure and microwave dielectric properties of B-site deficient double perovskite Ba[(Mg(1-x)/2Yx/3-x/6)W1/2]O3, Ceram. Int., 42, 3290, 10.1016/j.ceramint.2015.10.120
Ma, 2016, Microwave dielectric properties of low-fired Li2TiO3-MgO ceramics for LTCC applications, Mater. Sci. Eng. B: Adv., 204, 15, 10.1016/j.mseb.2015.10.007
Wakino, 1986, Far infrared reflection spectra of Ba(Zn,Ta)O3-BaZrO3 dielectric resonator material, J. Am. Ceram. Soc., 69, 34, 10.1111/j.1151-2916.1986.tb04689.x
Bi, 2017, Li4Mg3Ti2O9: a novel low-loss microwave dielectric ceramic for LTCC applications, Ceram. Int., 43, 7522, 10.1016/j.ceramint.2017.03.041
Bi, 2017, Crystal structure, infrared spectra and microwave dielectric properties of ultra low-loss Li2Mg4TiO7 ceramics, Mater. Lett., 196, 128, 10.1016/j.matlet.2017.03.038
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides, Acta Crystallogr., 32, 751, 10.1107/S0567739476001551
Shannon, 1992, Dielectric constants of silicate garnets and the oxide additivity rule, Am. Mineral., 77, 94
Shannon, 1993, Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys., 73, 348, 10.1063/1.353856
Zhou, 2015, Phase composition, crystal structure, infrared reflectivity and microwave dielectric properties of temperature stable composite ceramics (scheelite and zircon-type) in BiVO4-YVO4 system, J. Mater. Chem. C, 3, 2582, 10.1039/C4TC02728K
Pang, 2017, Structure-property relationships of low sintering temperature scheelite-structured (1-x)BiVO4-xLaNbO4 microwave dielectric ceramics, J. Mater. Chem. C, 5, 2695, 10.1039/C6TC05670A
Fang, 2017, Phase evolution, structure and microwave dielectric properties of Li2+xMg3SnO6 (x = 0.00–0.12) ceramics, Ceram. Int., 43, 13645, 10.1016/j.ceramint.2017.07.074
Zhang, 2014, X-ray diffraction and Raman scattering investigations on Ba[Mg(1-x)/3ZrxTa2(1-x)/3]O3 solid solutions, J. Alloys Compd., 646, 717, 10.1016/j.jallcom.2013.10.101
Kim, 2017, Microwave dielectric properties of Mg4Nb2O9-based ceramics with (BxW1-x)5+ substitutions at Nb5+ sites (B = Li, Mg, Al, Ti), Ceram. Int., 43, S339, 10.1016/j.ceramint.2017.05.316
Sanderson, 1968, Multiple and single bond energies in inorganic molecules, Inorg. Nucl. Chem., 30, 375, 10.1016/0022-1902(68)80464-6
Sanderson, 1983, Electronegativity and bond energy, J. Am. Chem. Soc., 105, 2259, 10.1021/ja00346a026
Luo, 2007