Crystal Structure of the Peroxo-diiron(III) Intermediate of Deoxyhypusine Hydroxylase, an Oxygenase Involved in Hypusination

Structure - Tập 23 - Trang 882-892 - 2015
Zhenggang Han1, Naoki Sakai1, Lars H. Böttger2, Sebastián Klinke1, Joachim Hauber3,4, Alfred X. Trautwein2, Rolf Hilgenfeld1,5
1Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
2Institute of Physics, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
3Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
4German Center for Infection Research (DZIF) c/o Heinrich-Pette-Institute - Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
5German Center for Infection Research (DZIF) c/o Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Tài liệu tham khảo

Abbruzzese, 1991, The active site of deoxyhypusyl hydroxylase: use of catecholpeptides and their component chelator and peptide moieties as molecular probes, Biochim. Biophys. Acta, 1077, 159, 10.1016/0167-4838(91)90053-3 Bailey, 2009, Crystallographic and catalytic studies of the peroxide-shunt reaction in a diiron hydroxylase, Biochemistry, 48, 8932, 10.1021/bi901150a Bochevarov, 2011, Insights into the different dioxygen activation pathways of methane and toluene monooxygenase hydroxylases, J. Am. Chem. Soc., 133, 7384, 10.1021/ja110287y Bou-Abdallah, 2005, Origin of the unusual kinetics of iron deposition in human H-chain ferritin, J. Am. Chem. Soc., 127, 3885, 10.1021/ja044355k Broadwater, 1998, Peroxodiferric intermediate of stearoyl-acyl carrier protein Δ9 desaturase: oxidase reactivity during single turnover and implications for the mechanism of desaturation, Biochemistry, 37, 14664, 10.1021/bi981839i Cano, 2010, Evidence for conformational changes in the yeast deoxyhypusine hydroxylase Lia1 upon iron displacement from its active site, Amino Acids, 38, 479, 10.1007/s00726-009-0407-8 Caraglia, 2001, The role of eukaryotic initiation factor 5A in the control of cell proliferation and apoptosis, Amino Acids, 20, 91, 10.1007/s007260170050 Caraglia, 2013, eIF5A isoforms and cancer: two brothers for two functions?, Amino Acids, 44, 103, 10.1007/s00726-011-1182-x Dong, 1996, Crystal structure analysis of a synthetic non-heme diiron-O2 adduct: insight into the mechanism of oxygen activation, Angew. Chem. Int. Ed. Engl., 35, 618, 10.1002/anie.199606181 Facchiano, 2001, Homology modelling of the human eukaryotic initiation factor 5A (eIF-5A), Prot. Eng., 14, 881, 10.1093/protein/14.11.881 Friedle, 2010, Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes, Chem. Soc. Rev., 39, 2768, 10.1039/c003079c Frisch, 2009, Characterization of two distinct adducts in the reaction of a nonheme diiron(II) complex with O2, Inorg. Chem., 48, 8325, 10.1021/ic900961k Greganova, 2011, Unique modifications of translation elongation factors, FEBS J., 278, 2613, 10.1111/j.1742-4658.2011.08199.x Gutierrez, 2013, eIF5A promotes translation of polyproline motifs, Mol. Cell, 51, 35, 10.1016/j.molcel.2013.04.021 Hanauske-Abel, 1994, Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation, Biochim. Biophys. Acta, 1221, 115, 10.1016/0167-4889(94)90003-5 Hauber, 2005, Identification of cellular deoxyhypusine synthase as a novel target for antiretroviral therapy, J. Clin. Invest., 115, 76, 10.1172/JCI200521949 Holmes, 1991, Structures of deoxy and oxy hemerythrin at 2.0 Å resolution, J. Mol. Biol., 218, 583, 10.1016/0022-2836(91)90703-9 Kaiser, 2012, Translational control of eIF5A in various diseases, Amino Acids, 42, 679, 10.1007/s00726-011-1042-8 Kang, 2007, Specificity of the deoxyhypusine hydroxylase-eukaryotic translation initiation factor (eIF5A) interaction, J. Biol. Chem., 282, 8300, 10.1074/jbc.M607495200 Kim, 1996, Structure and Mössbauer spectrum of a (μ-1,2-peroxo)bis(μ-carboxylato)diiron(III) model for the peroxo intermediate in the methane monooxygenase hydroxylase reaction cycle, J. Am. Chem. Soc., 118, 4914, 10.1021/ja9604370 Kim, 2006, Deoxyhypusine hydroxylase is an Fe(II)-dependent, HEAT-repeat enzyme. Identification of amino acid residues critical for Fe(II) binding and catalysis, J. Biol. Chem., 281, 13217, 10.1074/jbc.M601081200 Klotz, 1984, Binuclear oxygen carriers: hemerythrin, Acc. Chem. Res., 17, 16, 10.1021/ar00097a003 Korboukh, 2009, A long-lived, substrate-hydroxylating peroxodiiron(III/III) intermediate in the amine oxygenase, AurF, from Streptomyces thioluteus, J. Am. Chem. Soc., 131, 13608, 10.1021/ja9064969 Kurtz, 1990, Oxo- and hydroxo-bridged diiron complexes: a chemical perspective on a biological unit, Chem. Rev., 90, 585, 10.1021/cr00102a002 Lee, 1999, Oxygen activation catalyzed by methane monooxygenase hydroxylase component: proton delivery during the O-O bond cleavage steps, Biochemistry, 38, 4423, 10.1021/bi982712w Lee, 2013, Control of substrate access to the active site in methane monooxygenase, Nature, 494, 380, 10.1038/nature11880 Liu, 1995, Characterization of a diiron(III) peroxide intermediate in the reaction cycle of methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc., 117, 4997, 10.1021/ja00122a032 Maier, 2010, The unique hypusine modification of eIF5A promotes islet β cell inflammation and dysfunction in mice, J. Clin. Invest., 120, 2156, 10.1172/JCI38924 McCormick, 2011, Analysis of substrate access to active sites in bacterial multicomponent monooxygenase hydroxylases: X-ray crystal structure of xenon-pressurized phenol hydroxylase from Pseudomonas sp. OX1, Biochemistry, 50, 11058, 10.1021/bi201248b Moënne-Loccoz, 1998, O2 activation by non-heme diiron proteins: identification of a symmetric μ-1,2-peroxide in a mutant of ribonucleotide reductase, Biochemistry, 37, 14659, 10.1021/bi981838q Moënne-Loccoz, 1999, The ferroxidase reaction of ferritin reveals a diferric μ-1,2 bridging peroxide intermediate in common with other O2-activating non-heme diiron proteins, Biochemistry, 38, 5290, 10.1021/bi990095l Morris, 2009, Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem., 30, 2785, 10.1002/jcc.21256 Murray, 2007, Characterization of the arene-oxidizing intermediate in ToMOH as a diiron(III) species, J. Am. Chem. Soc., 129, 14500, 10.1021/ja076121h Nordlund, 1995, Di-iron-carboxylate proteins, Curr. Opin. Struct. Biol., 5, 758, 10.1016/0959-440X(95)80008-5 Ookubo, 1996, cis-μ-1,2-peroxo diiron complex: structure and reversible oxygenation, J. Am. Chem. Soc., 118, 701, 10.1021/ja953705n Pandelia, 2013, Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate, J. Am. Chem. Soc., 135, 15801, 10.1021/ja405047b Park, 2006, The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A), J. Biochem., 139, 161, 10.1093/jb/mvj034 Park, 2006, Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme, Proc. Natl. Acad. Sci. USA, 103, 51, 10.1073/pnas.0509348102 Saini, 2009, Hypusine-containing protein eIF5A promotes translation elongation, Nature, 459, 118, 10.1038/nature08034 Schüttelkopf, 2004, PRODRG: a tool for high-throughput crystallography of protein-ligand complexes, Acta Crystallogr. D Biol. Crystallogr., 60, 1355, 10.1107/S0907444904011679 Solomon, 2000, Geometric and electronic structure/function correlations in non-heme iron enzymes, Chem. Rev., 100, 235, 10.1021/cr9900275 Song, 2011, Mechanistic studies of reactions of peroxodiiron(III) intermediates in T201 variants of toluene/o-xylene monooxygenase hydroxylase, Biochemistry, 50, 5391, 10.1021/bi200340f Song, 2009, Characterization of a peroxodiiron(III) intermediate in the T201S variant of toluene/o-xylene monooxygenase hydroxylase from Pseudomonas sp. OX1, J. Am. Chem. Soc., 131, 6074, 10.1021/ja9011782 Song, 2010, Active site threonine facilitates proton transfer during dioxygen activation at the diiron center of toluene/o-xylene monooxygenase hydroxylase, J. Am. Chem. Soc., 132, 13582, 10.1021/ja1063795 Stenkamp, 1994, Dioxygen and hemerythrin, Chem. Rev., 94, 715, 10.1021/cr00027a008 Summa, 1999, Tertiary templates for the design of diiron proteins, Curr. Opin. Struct. Biol., 9, 500, 10.1016/S0959-440X(99)80071-2 Tome, 1997, Cellular eukaryotic initiation factor 5A content as a mediator of polyamine effects on growth and apoptosis, Neurosignals, 6, 150, 10.1159/000109121 Vu, 2009, Human deoxyhypusine hydroxylase, an enzyme involved in regulating cell growth, activates O2 with a nonheme diiron center, Proc. Natl. Acad. Sci. USA, 106, 14814, 10.1073/pnas.0904553106 Wallar, 1996, Dioxygen activation by enzymes containing binuclear non-heme iron clusters, Chem. Rev., 96, 2625, 10.1021/cr9500489 Weiss, 1997, On the use of the merging R factor as a quality indicator for X-ray data, J. Appl. Cryst., 30, 203, 10.1107/S0021889897003907 Xue, 2008, Insights into the P-to-Q conversion in the catalytic cycle of methane monooxygenase from a synthetic model system, Proc. Natl. Acad. Sci. USA, 105, 20615, 10.1073/pnas.0808512105 Zhang, 2005, Structural and spectroscopic characterization of (μ-hydroxo or μ-oxo)(μ-peroxo) diiron(III) complexes: models for peroxo intermediates of non-heme diiron proteins, J. Am. Chem. Soc., 127, 826, 10.1021/ja045594a