Crystal Structure of Human Nicotinamide Riboside Kinase
Structure - 2007
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abele, 1995, High-resolution structures of adenylate kinase from yeast ligated with inhibitor Ap5A, showing the pathway of phosphoryl transfer, Protein Sci., 4, 1262, 10.1002/pro.5560040702
Appleby, 2005, Structure of human uridine-cytidine kinase 2 determined by SIRAS using a rotating-anode X-ray generator and a single samarium derivative, Acta Crystallogr. D Biol. Crystallogr., 61, 278, 10.1107/S0907444904032937
Berger, 2004, The new life of a centenarian: signaling functions of NAD(P), Trends Biochem. Sci., 29, 111, 10.1016/j.tibs.2004.01.007
Bieganowski, 2004, Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans, Cell, 117, 495, 10.1016/S0092-8674(04)00416-7
Blander, 2004, The Sir2 family of protein deacetylases, Annu. Rev. Biochem., 73, 417, 10.1146/annurev.biochem.73.011303.073651
Brunger, 1998, Crystallography & NMR System: a new software suite for macromolecular structure determination, Acta Crystallogr., D54, 905
DeLano, 2002
Denu, 2005, The Sir2 family of protein deacetylases, Curr. Opin. Chem. Biol., 9, 431, 10.1016/j.cbpa.2005.08.010
Doublie, 1996, Crystallization and preliminary X-ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl-SRP9, FEBS Lett., 384, 219, 10.1016/0014-5793(96)00316-X
Eriksson, 2002, Structure and function of cellular deoxyribonucleoside kinases, Cell. Mol. Life Sci., 59, 1327, 10.1007/s00018-002-8511-x
Grifantini, 2000, Tiazofurine ICN pharmaceuticals, Curr. Opin. Investig. Drugs, 1, 257
Guse, 2005, Second messenger function and the structure-activity relationship of cyclic adenosine diphosphoribose (cADPR), FEBS J., 272, 4590, 10.1111/j.1742-4658.2005.04863.x
Hartmann, 2006, Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis, J. Mol. Biol., 364, 411, 10.1016/j.jmb.2006.09.001
Hasmann, 2003, FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis, Cancer Res., 63, 7436
Hendrickson, 1991, Determination of macromolecular structures from anomalous diffraction of synchrotron radiation, Science, 254, 51, 10.1126/science.1925561
Holm, 1993, Protein structure comparison by alignment of distance matrices, J. Mol. Biol., 233, 123, 10.1006/jmbi.1993.1489
Izard, 2000, The crystal structures of chloramphenicol phosphotransferase reveal a novel inactivation mechanism, EMBO J., 19, 2690, 10.1093/emboj/19.11.2690
Jager, 2002, Metabolism of the novel IMP dehydrogenase inhibitor benzamide riboside, Curr. Med. Chem., 9, 781, 10.2174/0929867024606830
Jauch, 2005, Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements, J. Biol. Chem., 280, 15131, 10.1074/jbc.M413195200
Jones, 1991, Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallogr. A, 47, 110, 10.1107/S0108767390010224
Khan, 2006, Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents, Nat. Struct. Mol. Biol., 13, 582, 10.1038/nsmb1105
Khan, 2007, Nicotinamide adenine dinucleotide metabolism as attractive target for drug discovery, Expert Opin. Ther. Targets, 11, 695, 10.1517/14728222.11.5.695
Kraft, 2002, Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography, J. Mol. Biol., 318, 1057, 10.1016/S0022-2836(02)00215-2
Lavie, 1998, Crystal structure of yeast thymidylate kinase complexed with the bisubstrate inhibitor P1-(5′-adenosyl) P5-(5′-thymidyl) pentaphosphate (TP5A) at 2.0 Å resolution: implications for catalysis and AZT activation, Biochemistry, 37, 3677, 10.1021/bi9720787
Lavie, 1998, Structural basis for efficient phosphorylation of 3′-azidothymidine monophosphate by Escherichia coli thymidylate kinase, Proc. Natl. Acad. Sci. USA, 95, 14045, 10.1073/pnas.95.24.14045
Lee, 2004, Multiplicity of Ca2+ messengers and Ca2+ stores: a perspective from cyclic ADP-ribose and NAADP, Curr. Mol. Med., 4, 227, 10.2174/1566524043360753
Li, 2006, Cell life versus cell longevity: the mysteries surrounding the NAD+ precursor nicotinamide, Curr. Med. Chem., 13, 883, 10.2174/092986706776361058
Magni, 1999, Enzymology of NAD+ synthesis, Adv. Enzymol. Relat. Areas Mol. Biol., 73, 135
Magni, 2004, Enzymology of NAD+ homeostasis in man, Cell. Mol. Life Sci., 61, 19, 10.1007/s00018-003-3161-1
Magni, 2004, Structure and function of nicotinamide mononucleotide adenylyltransferase, Curr. Med. Chem., 11, 873, 10.2174/0929867043455666
Nicholls, 1991, Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons, Proteins, 11, 281, 10.1002/prot.340110407
Otwinowski, 1997, Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol., 276, 307, 10.1016/S0076-6879(97)76066-X
Pankiwicz, 2004, Cofactor mimics as selective inhibitors of NAD-dependent inosine monophosphate dehydrogenase (IMPDH)-the major therapeutic target, Curr. Med. Chem., 11, 887, 10.2174/0929867043455648
Revollo, 2004, The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells, J. Biol. Chem., 279, 50754, 10.1074/jbc.M408388200
Revollo, 2007, The regulation of nicotinamide dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals, Curr. Opin. Gastroenterol., 23, 164, 10.1097/MOG.0b013e32801b3c8f
Rizzi, 1996, Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis, EMBO J., 15, 5125, 10.1002/j.1460-2075.1996.tb00896.x
Rongvaux, 2003, Reconstructing eukaryotic NAD metabolism, Bioessays, 25, 683, 10.1002/bies.10297
Sasiak, 1996, Purification and properties of a human nicotinamide ribonucleotide kinase, Arch. Biochem. Biophys., 333, 414, 10.1006/abbi.1996.0409
Schreiber, 2006, Poly(ADP-ribose): novel functions for an old molecule, Nat. Rev. Mol. Cell Biol., 7, 517, 10.1038/nrm1963
Stehle, 1992, Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 Å resolution, J. Mol. Biol., 224, 1127, 10.1016/0022-2836(92)90474-X
Storoni, 2004, Likelihood-enhanced fast rotation functions, Acta Crystallogr. D Biol. Crystallogr., 60, 432, 10.1107/S0907444903028956
Terwilliger, 2003, SOLVE and RESOLVE: automated structure solution and density modification, Methods Enzymol., 374, 22, 10.1016/S0076-6879(03)74002-6
Weeks, 1999, The design and implementation of SnB v2.0, J. Appl. Cryst., 32, 120, 10.1107/S0021889898010504
Welin, 2007, Structure-function analysis of a bacterial deoxyadenosine kinase reveals the basis for substrate specificity, J. Mol. Biol., 366, 1615, 10.1016/j.jmb.2006.12.010
Wojcik, 2006, Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste, J. Biol. Chem., 281, 33395, 10.1074/jbc.M607111200
Yan, 1999, Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity, Adv. Enzymol. Relat. Areas Mol. Biol., 73, 103
Ying, 2006, NAD+ and NADH in cellular functions and cell death, Front. Biosci., 11, 3129, 10.2741/2038
Yun, 2000, Structural basis for the feedback regulation of Escherichia coli pantothenate kinase by coenzyme A, J. Biol. Chem., 275, 28093, 10.1074/jbc.M003190200
Zhou, 2002, Structure of human nicotinamide/nicotinic acid mononucleotide adenylyltransferase. Basis for the dual substrate specificity and activation of the oncolytic agent tiazofurin, J. Biol. Chem., 277, 13148, 10.1074/jbc.M111469200