Crystal Structure‐ and Morphology‐Driven Electrochemistry of Iron Oxide Nanoparticles in Hydrogen Peroxide Detection

Advanced Materials Interfaces - Tập 6 Số 3 - 2019
Petr Jakubec1, Ondřéj Malina1, Jiří Tuček1, Ivo Medřík1, Zdenka Medříková1, Petr Slovák1, Josef Kašlík1, Radek Zbořil1
1Regional Centre of Advanced Technologies and Materials Departments of Experimental Physics and Physical Chemistry Faculty of Science Palacký University Olomouc Šlechtitelu˚ 27 783 71 Olomouc Czech Republic

Tóm tắt

AbstractVarious iron oxide nanoparticles with different morphologies are synthesized and subsequently tested for their conductivity and electrocatalytic activity toward hydrogen peroxide. The morphology and chemical and phase composition of iron oxide nanoparticles are evaluated employing scanning electron microscopy, X‐ray diffraction, 57Fe Mössbauer spectroscopy, and Brunauer–Emmett–Teller specific surface area measurements. The electrochemical properties of the as‐prepared sensors are estimated by electrochemical impedance spectroscopy. It is found that α‐Fe2O3 nanoparticles with the sticks morphology exhibit the best conductivity response among all the tested phases and morphologies. Moreover, it is predicted that conductivity of different iron oxides can be connected with a number of vacancies in their crystal structure. Furthermore, the influence of surface area and porosity of the material on the conductivity can be omitted. Finally, the electrocatalytic activity of iron oxide nanoparticles toward hydrogen peroxide is confirmed by means of cyclic voltammetry. The obtained results perfectly reflect those derived from electrochemical impedance spectroscopy and indicate that glassy carbon electrodes modified with the sticks morphology of α‐Fe2O3 hold a huge potential for hydrogen peroxide detection.

Từ khóa


Tài liệu tham khảo

10.1126/science.287.5460.1989

10.1016/0160-9327(82)90070-9

10.1016/j.biomaterials.2004.10.012

10.1126/science.1226338

10.1021/cr068445e

Cornell R. M., 2000, The Iron Oxides

10.1039/C5RA07484C

10.1063/1.4759474

10.1021/cm101967h

10.1021/cm0111074

10.1016/j.elecom.2011.03.040

10.1039/c1cp22128k

10.1088/0957-4484/26/26/265401

10.1149/1.3160547

10.1016/j.molstruc.2017.06.092

10.1016/j.jallcom.2012.07.047

10.1016/j.pcrysgrow.2008.08.003

10.1021/acs.cgd.7b00547

10.1039/c1nr10856e

10.1039/C4TC02752C

10.1021/am403720r

10.1016/j.apcatb.2017.07.063

10.1021/jp803016n

10.1021/nl3004286

10.1021/nl302618s

10.1021/acsnano.7b01152

10.1166/jbn.2005.038

10.1021/ja107419t

10.1021/es903390g

10.1016/j.bios.2003.11.019

10.1016/0092-8674(94)90131-7

10.1111/j.1471-4159.1992.tb10990.x

10.1021/bi990438f

10.1038/hr.2010.201

10.14411/eje.2011.061

10.1021/ac00090a020

10.1016/S0039-9140(01)00445-3

10.1007/s00128-008-9477-7

10.1016/j.electacta.2010.01.035

10.1039/C1AN15738H

10.1016/j.bios.2008.07.048

10.1016/j.snb.2012.09.044

10.1016/j.snb.2011.09.028

10.1016/j.bios.2006.05.022

10.2138/am.2010.3435

10.1166/jnn.2006.183

10.1039/c3an00791j

10.1135/cccc2011118

Boukamp B. A., 2007, User Manual for Frequency Response Analysis (FRA) for Windows

10.1002/9780470381588

10.1149/1.2044210

10.1002/9781118164075

10.1021/jp409416b

10.1016/S0022-0728(98)00115-6

10.1016/j.electacta.2005.02.128

Grundmann M., 2006, The Physics of Semiconductors: An Introduction Including Devices and Nanophysics

10.1007/978-0-387-68650-9

10.1021/nn900941e

10.1021/la501669a

10.1021/nl200356n

10.1103/PhysRevB.72.104436

Jeng H.‐T., 2002, Phys. Rev. B, 65, 1

10.1016/S1452-3981(23)19655-6

10.1007/978-3-662-04011-9

10.1016/j.bios.2013.12.033

10.1016/j.apcatb.2012.04.028

10.1021/ac00082a025

10.1021/ja505562p

10.1016/j.talanta.2010.03.019

10.1016/j.talanta.2011.10.004

10.1016/j.jcis.2016.10.050

10.1021/ja072918x

10.1002/ejic.200901066

10.1039/b919164j

10.1063/1.4759489

10.1088/1742-6596/217/1/012006

10.1007/BF02055410