Cryptic biodiversity in the commercial diamondback squid Thysanoteuthis rhombus Troschel 1857

Diego Deville1, Souta Mori1, Kentaro Kawai1, Alejandro Escánez2,3, Armando Macali4, Fedor Lishchenko5,6, Heather Braid7, Jean Githaiga-Mwicigi8, Kolliyil S. Mohamed9, Kathrin S. R. Bolstad7, Kazutaka Miyahara10, Chikatoshi Sugimoto11, Fernando Á. Fernández-Álvarez12, Gustavo Sanchez1,11
1Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan
2Department of Ecology and Animal Biology, University of Vigo, Vigo, Spain
3MARE-Marine and Environmental Sciences Centre, ARDITI, Funchal, Madeira Island, Portugal
4Ichthyogenic Experimental Marine Centre (CISMAR), Department of Ecological and Biological Sciences, Tuscia University, Tarquinia, Italy
5Vietnam-Russia Tropical Centre Marine Branch, Nha Trang, Vietnam
6A.N. Severtsov Institute of Ecology and Evolution of the RAS, Moscow, Russia
7AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Auckland, New Zealand
8Fisheries Research & Development, Fisheries Management Branch. Department of Forestry, Fisheries and the Environment (DFFE), Cape Town, South Africa
9Central Marine Fisheries Research Institute (CMFRI), Ernakulam North PO, India
10Hyogo Fisheries Technology Institute, Futami, Akashi, Japan
11Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
12Institut de Ciències del Mar, ICM-CSIC, Barcelona, Spain

Tóm tắt

Cephalopod fisheries are increasing, but little is known about the cryptic diversity of some key commercial species. Recent studies have shown that cryptic speciation is common in cephalopods, including several oceanic squids formerly considered ‘cosmopolitan species.’ Further efforts are needed to investigate the cryptic diversity of commercial species, to inform management and support sustainable fisheries practices. Thysanoteuthis rhombus is an oceanic squid, currently recognized as the single species of the family Thysanoteuthidae. Thysanoteuthis. rhombus has a global distribution in tropical and subtropical waters and is an economically important species, with the highest catches occurring off Okinawa in Japan and of potential fishery resource for other countries due to its high abundance and large size. Here, we used sequences from 12S rRNA, 16S rRNA, and cytochrome c oxidase I to characterize its cryptic diversity using samples collected throughout most of its known geographic range. We identified three different putative species whose distributions are concordant with main ocean basins: Thysanoteuthis major, the most abundant species, is widely distributed in the North Pacific Ocean, North Indian Ocean, and limits of the South Atlantic Ocean; Thysanoteuthis rhombus is distributed in the North and South Atlantic Ocean and Mediterranean Sea; and Thysanoteuthis cf. filiferum, likely the least sampled to date, is found in the southwestern Pacific Ocean. A sister relationship was observed between T. rhombus and T. major, and T. cf. filiferum was found to be the most divergent species. Based on our divergence estimation, we hypothesize that the closure of the Isthmus of Panama during the early Pliocene played a significant role in the split of T. rhombus and T. major, while the split of their ancestor from T. cf. filiferum coincided with an increase in the Pacific Walker Circulation and the longitudinal gradient of surface temperatures in the Pacific Ocean during the Late Oligocene and Early Miocene. Our work identifies three different putative species within Thysanoteuthis and has potential use for improving fishery management and conserving the diversity in these species.

Từ khóa


Tài liệu tham khảo

Aiken K, Kumagai N, Yasuda T, Jones I (2007) The egg trace method of identifying diamondback squid fishing grounds in Jamaican waters.

Alejo-Plata MDC, Urbano-Alonso B (2018) The finding of diamond squid Thysanoteuthis rhombus in the Gulf of Tehuantepec Northeastern Tropical Pacific. Hidrobiológica 28(1):147–150

Amor MD, Norman MD, Cameron HE, Strugnell JM (2014) Allopatric speciation within a cryptic species complex of Australasian Octopuses. PLoS ONE 9:e98982. https://doi.org/10.1371/journal.pone.0098982

Anderson FE, Marian JEAR (2020) The grass squid Pickfordiateuthis pulchella is a paedomorphic loliginid. Mol Phylogenet Evol 147:106801. https://doi.org/10.1016/j.ympev.2020.106801

Arkhipkin AI, Rodhouse PGK, Pierce GJ et al (2015) World squid fisheries. Rev Fish Sci Aquacult 23:92–252. https://doi.org/10.1080/23308249.2015.1026226

Asahida T, Kobayashi T, Saitoh K, Nakayama I (1996) Tissue preservation and total DNA extraction form fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci 62:727–730

Bickford D, Lohman DJ, Sodhi NS et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155. https://doi.org/10.1016/j.tree.2006.11.004

Blainville HMD de (1824) Mollusques, Mollusca (Malacoz.), 1–392. In: Dictionnaire des Sciences Naturelles (F. Cuvier, ed.), 32. Levrault, Strasbourg et Paris, & Le Normant, Paris.

Bouckaert RR, Drummond AJ (2017) bModelTest: bayesian phylogenetic site model averaging and model comparison. BMC Evol Biol 17:42. https://doi.org/10.1186/s12862-017-0890-6

Bouckaert R, Vaughan TG, Barido-Sottani J et al (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15:e1006650. https://doi.org/10.1371/journal.pcbi.1006650

Bower JR, Ichii T (2005) The red flying squid (Ommastrephes bartramii): a review of recent research and the fishery in Japan. Fish Res 76:39–55. https://doi.org/10.1016/j.fishres.2005.05.009

Bower JR, Miyahara K (2005) The diamond squid (Thysanoteuthis rhombus): a review of the fishery and recent research in Japan. Fish Res 73:1–11. https://doi.org/10.1016/j.fishres.2005.01.020

Carvalho GR, Hauser L (1994) Molecular genetics and the stock concept in fisheries. Rev Fish Biol Fish 4:326–350. https://doi.org/10.1007/BF00042908

Cheng J, Sha Z (2017) Cryptic diversity in the Japanese mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae): allopatric diversification, secondary contact and hybridization. Sci Rep 7:1972. https://doi.org/10.1038/s41598-017-02059-7

CRFM (2012) Report of Eighth Annual Scientific Meeting – Kingstown, St. Vincent & the Grenadines, National Reports. CRFM Fishery Report, 1(1): 54.

Cuvier G (1798) Tableau élémentaire de l'histoire naturelle des animaux. Baudoin, Paris.: i-xvi, 1–710, Pl. 1–14.

Czekanski-Moir JE, Rundell RJ (2019) The ecology of non ecological speciation and nonadaptive radiations. Trends Ecol Evol 34:400–415. https://doi.org/10.1016/j.tree.2019.01.012

d’Orbigny A (1834) Mollusques. Voyage Dans L’amérique Meridionale 5:1–758

Dickson JO, Ramiscal RV, Magno B (2000) Diamondback squid (Tysanoteuthis rhombus) exploration in the South China Sea, Area III: Western Philippines. In: Proceedings of the Third Technical Seminar on Marine Fishery Resources Survey in the South China Sea, Area III: Western Philippines, 1999. Secretariat, Southeast Asian Fisheries Development Center, 32–38.

Doubleday ZA, Prowse TAA, Arkhipkin A et al (2016) Global proliferation of cephalopods. Curr Biol 26:R406–R407. https://doi.org/10.1016/j.cub.2016.04.002

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

Escánez-Pérez AE, Elena RR, González AFG, Sierra AG (2012) On the occurrence of egg masses of the diamond-shaped squid Thysanoteuthis rhombus Troschel, 1857 in the subtropical eastern Atlantic (Canary Islands). A potential commercial species? Zookeys 222:69–76. https://doi.org/10.3897/zookeys.222.2835

Esselstyn JA, Evans BJ, Sedlock JL et al (2012) Single-locus species delimitation: a test of the mixed Yule–coalescent model, with an empirical application to Philippine round-leaf bats. Proc Royal Soc b: Biol Sci 279:3678–3686. https://doi.org/10.1098/rspb.2012.0705

FAO (2022) The state of world fisheries and aquaculture 2022. Rome, FAO, Towards Blue Transformation. https://doi.org/10.4060/cc0461en

Fernández-Álvarez FÁ, Martins CPP, Vidal EAG, Villanueva R (2017) Towards the identification of the ommastrephid squid paralarvae (Mollusca: Cephalopoda): morphological description of three species and a key to the north-east Atlantic species. Zool J Linn Soc 180:268–287. https://doi.org/10.1111/zoj.12496

Fernández-Álvarez FÁ, Machordom A, García-Jiménez R et al (2018) Predatory flying squids are detritivores during their early planktonic life. Sci Rep 8:3440. https://doi.org/10.1038/s41598-018-21501-y

Fernández-Álvarez FÁ, Braid HE, Nigmatullin CM et al (2020) Global biodiversity of the genus Ommastrephes (Ommastrephidae: Cephalopoda): an allopatric cryptic species complex. Zool J Linn Soc 190:460–482. https://doi.org/10.1093/zoolinnean/zlaa014

Fernández-Álvarez FÁ, Sánchez P, Villanueva R (2021) Morphological and molecular assessments of bobtail squids (Cephalopoda: Sepiolidae) reveal a hidden history of biodiversity. Front in Mar Sci 7:1233. https://doi.org/10.3389/fmars.2020.632261

Fernández-Álvarez FÁ, Taite M, Vecchione M et al (2022) A phylogenomic look into the systematics of oceanic squids (order Oegopsida). Zool J Linn Soc 194:1212–1235. https://doi.org/10.1093/zoolinnean/zlab069

Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

Fuchs D, Iba Y, Ifrim C et al (2013) Longibelus gen. nov., a new Cretaceous coleoid genus linking Belemnoidea and early Decabrachia. Palaeontology 56:1081–1106. https://doi.org/10.1111/pala.12036

Furtado A (1887) Sur une nouvelle espèce de céphalopode appartement an genre Ommatostrephes. Memorias Da Academia Real Das Sciencas De Lisboa 6(2):3–16

GBIF (2022) GBIF Occurrence Download https://doi.org/10.15468/dl.yrvgrv. Accessed 3 Jul 2022.

Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253:769–778. https://doi.org/10.1016/j.jtbi.2008.04.005

Glaubrecht M, Salcedo-Vargas MA (2000) Annotated type catalogue of the Cephalopoda (Mollusca) in the Museum für Naturkunde, Humboldt University of Berlin. Mitteilungen Aus Dem Museum Für Naturkunde Berlin, Zoologischen 76(2):269–282

Gleadall IG (2004) Some old and new genera of octopus. Interdisciplin Inform Sci 10(2):99–112

Gleadall IG (2013) A molecular sequence proxy for Muusoctopus januarii and calibration of recent divergence among a group of mesobenthic octopuses. J Exp Mar Biol Ecol 447:106–122. https://doi.org/10.1016/j.jembe.2013.02.017

Gould AA (1852) Mollusca and shells. In: United States exploring expedition during the years 1838, 1839, 1840, 1841, 1842 under the command of Charles Wilkes. Boston. 12: 1–510; atlas 1856: 1–16.

Gray JE (1828) Spicilegia Zoologica; or original figures and short systematic descriptions of new andunfigured animals. Treuttel, Wurtz and Co., London, Part I

Gray JE (1849) Catalogue of the Mollusca in the collection of the British Museum I: Cephalopoda antepedia. British Museum, London, p 164

Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA Barcodes. PLoS Biol 2:e312. https://doi.org/10.1371/journal.pbio.0020312

Herrera-Moreno A, Betancourt Fernández L, Silva M, et al (2011) Coastal fisheries of the Dominican Republic. Rome: Food and Agriculture Organization of the United Nations (FAO).

Hoang DT, Chernomor O, von Haeseler A et al (2017) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. https://doi.org/10.1093/molbev/msx281

Hoffmann R, Weinkauf MFG, Fuchs D, Lukeneder A (2021) Is there more than one species in the genus Spirula (Cephalopoda: Decabrachia): evidence for an Atlantic-Pacific divide. J Molluscan Stud. https://doi.org/10.1093/mollus/eyab001

Hou Z, Li S (2018) Tethyan changes shaped aquatic diversification. Biol Rev Camb Philos Soc 93:874–896. https://doi.org/10.1111/brv.12376

Hoyle WE (1904) Reports on the Cephalopoda. Bull Museum Comp Zool at Harvard College Cambridge 43(1):1–72

Hudson RR (1990) Gene genealogies and the coalescent process. Oxford Surv Evolut Biol 7:44

Ihssen PE, Booke HE, Casselman JM et al (2011) Stock identification: materials and methods. Can J Fish Aquat Sci. https://doi.org/10.1139/f81-230

Ikeda Y, Onaka S, Kidokoro H, Sakamoto W (2003) Notes on an unsusual catch of the juvenile diamond-shaped squid Thysanoteuthis rhombus in Pacific waters off southern Hokkaido. Fish Sci 69:660–662. https://doi.org/10.1046/j.1444-2906.2003.00671.x

Joubin L (1933) Notes préliminaires sur les Céphalopodes des croisières du DANA (1921–1922), 4e Partie. Annals De L’institut Océanographiques 13(1):1–49

Kalyaanamoorthy S, Minh BQ, Wong TKF et al (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285

Keferstein W (1866) Kopffusser: Cephalopoda Cuv., 1307–1464, plates 110–136. In H.G. Bronn, Die Klassen und Ordnungen des Thier-reiches: Weichthiere (Malacozoa). 1500 pages, 136 plates. Leipzig und Heidelberg, 1862–1866.

Kendall DG (1948) On the generalized “birth-and-death” process. Annal Math Stat 19:1–15

Kitaura J, Yamamoto G, Nishida M (1998) Genetic Variation in populations of the diamond-shaped squid Thysanoteuthis rhombus as examined by mitochondrial DNA sequence analysis. Fish Sci 64:538–542. https://doi.org/10.2331/fishsci.64.538

Kristensen TK, Knudsen J (1983) A catalogue of the type specimens of Cephalopoda (Mollusca) in the zoological museum. Univ Copenhagen Steenstrupia 9(10):217–227

Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278. https://doi.org/10.1093/bioinformatics/btu531

Leach WE (1817) Synopsis of the orders, families and genera of the class Cephalopoda. Zool Misc Being Descript Interest Anim 3(30):137–141

Lee E-Y, Park K-A (2019) Change in the recent warming trend of sea surface temperature in the East Sea (Sea of Japan) over decades (1982–2018). Remote Sens 11:2613. https://doi.org/10.3390/rs11222613

Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. https://doi.org/10.1111/2041-210X.12410

Leigh EG, O’Dea A, Vermeij GJ (2014) Historical biogeography of the Isthmus of Panama. Biol Rev Camb Philos Soc 89:148–172. https://doi.org/10.1111/brv.12048

Lesueur CA (1821) Descriptions of several new species of cuttlefish. J Acad Nat Sci Philadelphia 2(1):86–101

Lima FD, Strugnell JM, Leite TS, Lima SMQ (2020) A biogeographic framework of octopod species diversification: the role of the Isthmus of Panama. PeerJ 8:e8691. https://doi.org/10.7717/peerj.8691

Lindgren AR (2010) Molecular inference of phylogenetic relationships among Decapodiformes (Mollusca: Cephalopoda) with special focus on the squid order Oegopsida. Mol Phylogenet Evol 56:77–90. https://doi.org/10.1016/j.ympev.2010.03.025

Linnaeus C (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata, 1: 824

Loor-Andrade P, Pincay-Espinoza J, Carrera-Fernández M, Rosas-Luis R (2017) Feeding habits of billfishes (Carangaria: Istiophoriformes) in the Ecuadorian Pacific Ocean. Neotrop Ichthyol. https://doi.org/10.1590/1982-0224-20160162

MASPLAN (2018) Republic of Maldives Project for the formulation of Master plan for sustainable Fisheries (MASPLAN). Technical report of the Republic of Maldives Ministry of Fisheries and Agriculture.

Meier R, Zhang G, Ali F (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst Biol 57:809–813

Minh BQ, Schmidt HA, Chernomor O et al (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. https://doi.org/10.1093/molbev/msaa015

Miyahara K, Gorie S (2005) Comparison of CPUEs in the diamond squid angling fishery off Hyogo prefecture, the Sea of Japan. Bull. Hyogo Pref. Tech Cent Agri Forest Fish (fish Sect) 38:15–23 ((in Japanese with English abstract))

Miyahara K, Fukui K, Ota T et al (2006) Laboratory observations on the early life stages of the diamond squid Thysanoteuthis rhombus. J Molluscan Stud 72:199–205

Miyahara K, Ota T, Hatayama J et al (2008) Tagging studies on the diamond squid (Thysanoteuthis rhombus) in the western Sea of Japan. Bull Jap Soc Fish Oceanogr 72:30–39

Monaghan MT, Wild R, Elliot M et al (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol 58:298–311. https://doi.org/10.1093/sysbio/syp027

Naef A (1912) Teuthologische Notizen. 4 Die Gattungen der Loliginidae. Zool Anz 39:741–745

Naef A (1923) Cephalopoda Part III. Fauna Flora Gulf of Naples Monograph 35(2):313–917

Neige P, Lapierre H, Merle D (2016) New Eocene coleoid (Cephalopoda) diversity from statolith remains: Taxonomic assignation, fossil record analysis, and new data for calibrating molecular phylogenies. PLoS ONE 11:e0154062. https://doi.org/10.1371/journal.pone.0154062

Nesis KN (1987) Cephalopods of the World; Squids, cuttlefishes, Octopuses, and Allies. Publications, Neptune City, NJ, USA, T.F.H

Neves JMM, Almeida JPFA, Sturaro MJ et al (2020) Deep genetic divergence and paraphyly in cryptic species of Mugil fishes (Actinopterygii: Mugilidae). Syst Biodiv 18:116–128. https://doi.org/10.1080/14772000.2020.1729892

Nieuwenhove AHMV, Ratsimbazafy HA, Kochzius M (2019) Cryptic diversity and limited connectivity in octopuses: recommendations for fisheries management. PLoS ONE 14:e0214748. https://doi.org/10.1371/journal.pone.0214748

Nigmatullin CM, Arkhipkin AI, Sabirov RM (1995) Age, growth and reproductive biology of diamond-shaped squid Thysanoteuthis rhombus (Oegopsida:Thysanoteuthidae). Marine Ecol Prog Series 124:73–87

Nigmatullin CM, Arkhipkin AI (1998) A review of the biology of the diamondback squid, Thysanoteuthis rhombus (Oegopsida: Thysanoteuthidae). In: Okutani T (ed) Contributed papers to International Symposium on Large Pelagic Squids : July 18–19, 1996, for JAMARC’s 25th anniversary of its foundation. Japan Marine Fishery Resources Research Center, Tokyo, 155–181.

Nimoho G, Amos G, Fujii M et al (2014) Diamondback squid and egg mass record in Vanuatu. SPC Fish Newslett 144:48–52

Nishimura S (1966) Notes on the occurrence and biology of the oceanic squid, Thysanoteuthis rhombus troschel, in japan. Publ Seto Mar Biol Lab 14:327–349. https://doi.org/10.5134/175443

Okutani T, Tagawa M, and Horikawa H (1987) Cephalopods from continental shelf and slope around Japan. 194 pages. Tokyo: Japan Fisheries Resource Conservation Association.

Onitsuka G, Hirose N, Miyahara K et al (2010) Numerical simulation of the migration and distribution of diamond squid (Thysanoteuthis rhombus) in the southwest Sea of Japan. Fish Oceanogr 19:63–75. https://doi.org/10.1111/j.1365-2419.2009.00528.x

Owen R (1836) Descriptions of some new and rare Cephalopoda, collected by Mr. George Bennet, Corr. Memb. Z.S. Proc Zool Soc London 37:19–24

Palumbi (1996) Nucleic acids II : the polymerase chain reaction. Molecular systematics 205–247.

Pardo-Gandarillas MC, Torres FI, Fuchs D, Ibáñez CM (2018) Updated molecular phylogeny of the squid family Ommastrephidae: Insights into the evolution of spawning strategies. Mol Phylogenet Evol 120:212–217. https://doi.org/10.1016/j.ympev.2017.12.014

Park K-A, Park J-E, Choi B-J et al (2013) An oceanic current map of the east sea for science textbooks based on scientific knowledge acquired from oceanic measurements. Sea: J Korean Soc Oceanograph 18:234–265. https://doi.org/10.7850/jkso.2013.18.4.234

Pfeffer G (1912) Die Cephalopoden der Plankton-Expedition. Zugleich eine monographische übersicht der Oegopsiden Cephalopoden. Ergebnisse Der Plankton-Expedition Der Humboldt-Stiftung 2:1–815

Pons J, Barraclough TG, Gomez-Zurita J et al (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609. https://doi.org/10.1080/10635150600852011

Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

Puneeta P, Vijai D, Yoo H-K et al (2015) Observations on the spawning behavior, egg masses and paralarval development of the ommastrephid squid Todarodes pacificus in a laboratory mesocosm. J Exp Biol 218:3825–3835. https://doi.org/10.1242/jeb.127670

Rambaut A, Drummond AJ, Xie D et al (2018) Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032

Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311. https://doi.org/10.1007/BF02338839

Rannala B, Yang Z (2003) Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:1645–1656. https://doi.org/10.1093/genetics/164.4.1645

Reid NM, Carstens BC (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol 12:196. https://doi.org/10.1186/1471-2148-12-196

Roque-Sánchez MA, Donayre Salazar S (2021) Thysanoteuthis rhombus Troschel, 1857 (Teuthida: Thysanoteuthidae) calamar diamante, registro en la zona costera de Ica, Perú. Rev PERU Biol 28

Roux C, Fraïsse C, Romiguier J et al (2016) Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol 14:e2000234. https://doi.org/10.1371/journal.pbio.2000234

Sajikumar KK, Sasikumar G, Venkatesan V et al (2020) Distribution, age and growth of the diamondback squid, Thysanoteuthis rhombus (Cephalopoda: Thysanoteuthidae) from the tropical Arabian Sea. Fish Res 224:105478. https://doi.org/10.1016/j.fishres.2019.105478

Sales JBDL, Rodrigues-Filho LFDS, Ferreira YDS, Carneiro J, Asp NE, Shaw PW, Sampaio I (2017) Divergence of cryptic species of Doryteuthis plei Blainville, 1823 (Loliginidae, Cephalopoda) in the Western Atlantic Ocean is associated with the formation of the Caribbean Sea. Mol Phylogene Evol 106:44–54. https://doi.org/10.1016/j.ympev.2016.09.014

Sanchez G, Fernández-Álvarez FÁ, Taite M et al (2021) Phylogenomics illuminates the evolution of bobtail and bottletail squid (order Sepiolida). Commun Biol 4:1–9. https://doi.org/10.1038/s42003-021-02348-y

Sasaki M (1929) A monograph of the dibranchiate cephalopods of the Japanese and adjacent waters. Journal of the College of Agriculture, Hokkaido Imperial University 20(supplement):1–357

Sauer WHH, Gleadall IG, Downey-Breedt N et al (2019) World octopus fisheries. Rev Fish Sci Aquacult. https://doi.org/10.1080/23308249.2019.1680603

Secor DH (2014) The Unit Stock Concept: Bounded Fish and Fisheries. In: Stock Identification Methods. Academic Press, https://doi.org/10.1016/B978-0-12-397003-9.00002-3

Simon C, Frati F, Beckenbach A et al (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701. https://doi.org/10.1093/aesa/87.6.651

Steenstrup J (1856) Hectoctyldannelsen hos Octopodslaegterne Argonauta og Tremoctopus, oplyst ved Iagttagelse af lignende Dannelser hos Blacksprutterne i Almindelighed.Kongelige Danske Videnskabernes Selskabs Skrifter, 5 Raekke. Naturvidenskabelig og Mathematisk 4:185–216

Steenstrup J (1857) Oplysning om en ny Art af Blaeksprutter. Oversigt over Det Kongelige Danske Videnskabernes Selskabs Forhandlinger 1857(1/2):11–14

Sweeney MJ and Young RE (2003) Taxa associated with the Family Thysanoteuthidae Keferstein, 1866. http://tolweb.org/accessory/Thysanoteuthidae_Taxa?acc_id=2333 [29–01–2021]

Tang Y, Zhang X, Ma Y, Zheng X (2021) Descriptive study of the mitogenome of the diamondback squid (Thysanoteuthis rhombus Troschel, 1857) and the evolution of mitogenome arrangement in oceanic squids. J Zoolog Syst Evol Res. https://doi.org/10.1111/jzs.12478

Tanner AR, Fuchs D, Winkelmann IE et al (2017) Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic marine revolution. Proc Royal Soc b: Biol Sci 284:20162818. https://doi.org/10.1098/rspb.2016.2818

Troschel FH (1857) Bermerkungen uber die Cephalopoden von Messina. Archiv Fur Naturgeschichte 23(1):40–76

Udny Yule G (1925) A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS. Philos Trans R Soc Lond B Biol Sci 213:21–87

Ulloa PM, Hernández CE, Rivera RJ, Ibáñez CM (2017) Biogeografía histórica de los calamares de la familia Loliginidae (Teuthoidea: Myopsida). Latin American J Aquat Res 45:113–129. https://doi.org/10.3856/vol45-issue1-fulltext-11

Villanueva R, Vidal EAG, Fernández-Álvarez FÁ, Nabhitabhata J (2016) Early mode of life and hatchling size in cephalopod molluscs: influence on the species distributional ranges. PLoS ONE 11:e0165334. https://doi.org/10.1371/journal.pone.0165334

von Der Heyden S, Beger M, Toonen RJ, van Herwerden L, Juinio-Meñez MA, Ravago-Gotanco R, Bernardi G (2014) The application of genetics to marine management and conservation: examples from the Indo-Pacific. Bull Marine Sci 90(1):123–158. https://doi.org/10.5343/bms.2012.1079

Wakabayashi T, Tsuchiya K, Segawa S (2005) Morphological changes with growth in the paralarvae of the diamondback squid Thysanoteuthis rhombus Troschel, 1857. Phuket Marine Biol Center Res Bull 66:167–174

Yan Q, Korty R, Zhang Z et al (2021) Large shift of the Pacific walker circulation across the Cenozoic. Natl Sci Rev 8:nwaa101. https://doi.org/10.1093/nsr/nwaa101

Yang Z (2015) The BPP program for species tree estimation and species delimitation. Curr Zool 61:854–865. https://doi.org/10.1093/czoolo/61.5.854

Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci U S A 107:9264–9269. https://doi.org/10.1073/pnas.0913022107

Yang Z, Rannala B (2014) Unguided species delimitation using DNA sequence data from multiple Loci. Mol Biol Evol 31:3125–3135. https://doi.org/10.1093/molbev/msu279

Yoder AD, Burns MM, Génin F (2002) Molecular evidence of reproductive isolation in sympatric sibling species of mouse lemurs. Int J Primatol 23:1335–1343. https://doi.org/10.1023/A:1021187106641

Zhang R, Drummond A (2020) Improving the performance of Bayesian phylogenetic inference under relaxed clock models. BMC Evol Biol 20:1–28. https://doi.org/10.1186/s12862-020-01609-4

Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876. https://doi.org/10.1093/bioinformatics/btt499