Cryo-EM grid optimization for membrane proteins

iScience - Tập 24 - Trang 102139 - 2021
Domen Kampjut1, Julia Steiner1, Leonid A. Sazanov1
1Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria

Tài liệu tham khảo

Bayburt, 2010, Membrane protein assembly into Nanodiscs, FEBS Lett., 584, 1721, 10.1016/j.febslet.2009.10.024 Bloch, 2020, Membrane protein Cryo-EM: cryo-grid optimization and data collection with protein in detergent, 227, 10.1007/978-1-0716-0373-4_16 Bokori-Brown, 2016, Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein, Nat. Commun., 7, 1, 10.1038/ncomms11293 Chen, 2019, Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: Bacterial RNA polymerase and CHAPSO, J. Struct. Biol. X, 1, 100005 Choy, 2021, A 10-year meta-analysis of membrane protein structural biology: detergents, membrane mimetics, and structure determination techniques, Biochim. Biophys. Acta - Biomembranes, 1863, 183533, 10.1016/j.bbamem.2020.183533 Dill, 2010 D’Imprima, 2019, Protein denaturation at the air-water interface and how to prevent it, eLife, 8, e42747, 10.7554/eLife.42747 Efremov, 2015, Architecture and conformational switch mechanism of the ryanodine receptor, Nature, 517, 39, 10.1038/nature13916 Feja, 1999, Determination of the inelastic mean free path of electrons in vitrified ice layers for on-line thickness measurements by zero-loss imaging, J. Microsc., 193, 15, 10.1046/j.1365-2818.1999.00436.x Fiedorczuk, 2017 Flygaard, 2020, Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization, Nat. Commun., 11, 5342, 10.1038/s41467-020-18993-6 Frotscher, 2015, A fluorinated detergent for membrane-protein applications, Angew. Chem. Int. Ed., 54, 5069, 10.1002/anie.201412359 Garaeva, 2018, Cryo-EM structure of the human neutral amino acid transporter ASCT2, Nat. Struct. Mol. Biol., 25, 515, 10.1038/s41594-018-0076-y Glaeser, 2016, Factors that influence the formation and stability of thin, cryo-EM specimens, Biophysical J. Biophysical Soc., 749, 10.1016/j.bpj.2015.07.050 Gu, 2016, The architecture of the mammalian respirasome, Nature, 537, 639, 10.1038/nature19359 Gu, 2019, Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1, Science, 364, 1068, 10.1126/science.aaw4852 Guo, 2017, Atomic model for the dimeric FO region of mitochondrial ATP synthase, Science, 358, 936, 10.1126/science.aao4815 Herzik, 2017, Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV, Nat. Methods, 14, 1075, 10.1038/nmeth.4461 Johnson, 2017, Structural basis of substrate recognition by the multidrug resistance protein MRP1, Cell, 168, 1075, 10.1016/j.cell.2017.01.041 Kühlbrandt, 2014, The resolution revolution, Science, 343, 1443, 10.1126/science.1251652 Lee, 2016, A method for detergent-free isolation of membrane proteins in their local lipid environment, Nat. Protoc., 11, 1149, 10.1038/nprot.2016.070 Letts, 2019, Structures of respiratory supercomplex I+III2 reveal functional and conformational crosstalk, Mol. Cell, 75, 1131, 10.1016/j.molcel.2019.07.022 Letts, 2016, The architecture of respiratory supercomplexes, Nature, 537, 644, 10.1038/nature19774 Mühleip, 2021, ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria, Nat. Commun., 12, 120, 10.1038/s41467-020-20381-z Orlova, 2011, Structural analysis of macromolecular assemblies by electron microscopy, Chem. Rev., 111, 7710, 10.1021/cr100353t Palovcak, 2018, A simple and robust procedure for preparing graphene-oxide cryo-EM grids, J. Struct. Biol., 204, 80, 10.1016/j.jsb.2018.07.007 Pinke, 2020, Cryo-EM structure of the entire mammalian F-type ATP synthase, Nat. Struct. Mol. Biol., 27, 1077, 10.1038/s41594-020-0503-8 Popot, 2011, Amphipols from A to Z∗, Annu. Rev. Biophys., 40, 379, 10.1146/annurev-biophys-042910-155219 Porterfield, 2010, A simple and general method for determining the protein and nucleic acid content of viruses by UV absorbance, Virology, 407, 281, 10.1016/j.virol.2010.08.015 Rohou, 2015, CTFFIND4: fast and accurate defocus estimation from electron micrographs, J. Struct. Biol., 192, 216, 10.1016/j.jsb.2015.08.008 Russo, 2016, Progress towards an optimal specimen support for electron cryomicroscopy, Curr. Opin. Struct. Biol., 37, 81, 10.1016/j.sbi.2015.12.007 Schmidt-Krey, 2011, Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles, Micron, 42, 107, 10.1016/j.micron.2010.07.004 Sgro, 2018, Cryo-EM grid preparation of membrane protein samples for single particle analysis, Front. Mol. Biosci., 5, 74, 10.3389/fmolb.2018.00074 Sousa, 2016, Functional asymmetry and electron flow in the bovine respirasome, eLife, 5, e21290, 10.7554/eLife.21290 Steiner, 2020, Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter, eLife, 9, e59407, 10.7554/eLife.59407 Urbani, 2005, A colorimetric determination for glycosidic and bile salt-based detergents: applications in membrane protein research, Anal. Biochem., 336, 117, 10.1016/j.ab.2004.09.040 Velazhahan, 2020, Structure of the class D GPCR Ste2 dimer coupled to two G proteins, Nature, 589, 148, 10.1038/s41586-020-2994-1 Vinothkumar, 2016, Single particle electron cryomicroscopy: trends, issues and future perspective, Q. Rev. Biophys., 49, e13, 10.1017/S0033583516000068 Zhang, 2016, Gctf: Real-time CTF determination and correction, J. Struct. Biol., 193, 1, 10.1016/j.jsb.2015.11.003 Zi Tan, 2017, Addressing preferred specimen orientation in single-particle cryo-EMthrough tilting, Nat. Methods, 14, 793, 10.1038/nmeth.4347