Cryo-EM grid optimization for membrane proteins
Tài liệu tham khảo
Bayburt, 2010, Membrane protein assembly into Nanodiscs, FEBS Lett., 584, 1721, 10.1016/j.febslet.2009.10.024
Bloch, 2020, Membrane protein Cryo-EM: cryo-grid optimization and data collection with protein in detergent, 227, 10.1007/978-1-0716-0373-4_16
Bokori-Brown, 2016, Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein, Nat. Commun., 7, 1, 10.1038/ncomms11293
Chen, 2019, Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: Bacterial RNA polymerase and CHAPSO, J. Struct. Biol. X, 1, 100005
Choy, 2021, A 10-year meta-analysis of membrane protein structural biology: detergents, membrane mimetics, and structure determination techniques, Biochim. Biophys. Acta - Biomembranes, 1863, 183533, 10.1016/j.bbamem.2020.183533
Dill, 2010
D’Imprima, 2019, Protein denaturation at the air-water interface and how to prevent it, eLife, 8, e42747, 10.7554/eLife.42747
Efremov, 2015, Architecture and conformational switch mechanism of the ryanodine receptor, Nature, 517, 39, 10.1038/nature13916
Feja, 1999, Determination of the inelastic mean free path of electrons in vitrified ice layers for on-line thickness measurements by zero-loss imaging, J. Microsc., 193, 15, 10.1046/j.1365-2818.1999.00436.x
Fiedorczuk, 2017
Flygaard, 2020, Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization, Nat. Commun., 11, 5342, 10.1038/s41467-020-18993-6
Frotscher, 2015, A fluorinated detergent for membrane-protein applications, Angew. Chem. Int. Ed., 54, 5069, 10.1002/anie.201412359
Garaeva, 2018, Cryo-EM structure of the human neutral amino acid transporter ASCT2, Nat. Struct. Mol. Biol., 25, 515, 10.1038/s41594-018-0076-y
Glaeser, 2016, Factors that influence the formation and stability of thin, cryo-EM specimens, Biophysical J. Biophysical Soc., 749, 10.1016/j.bpj.2015.07.050
Gu, 2016, The architecture of the mammalian respirasome, Nature, 537, 639, 10.1038/nature19359
Gu, 2019, Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1, Science, 364, 1068, 10.1126/science.aaw4852
Guo, 2017, Atomic model for the dimeric FO region of mitochondrial ATP synthase, Science, 358, 936, 10.1126/science.aao4815
Herzik, 2017, Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV, Nat. Methods, 14, 1075, 10.1038/nmeth.4461
Johnson, 2017, Structural basis of substrate recognition by the multidrug resistance protein MRP1, Cell, 168, 1075, 10.1016/j.cell.2017.01.041
Kühlbrandt, 2014, The resolution revolution, Science, 343, 1443, 10.1126/science.1251652
Lee, 2016, A method for detergent-free isolation of membrane proteins in their local lipid environment, Nat. Protoc., 11, 1149, 10.1038/nprot.2016.070
Letts, 2019, Structures of respiratory supercomplex I+III2 reveal functional and conformational crosstalk, Mol. Cell, 75, 1131, 10.1016/j.molcel.2019.07.022
Letts, 2016, The architecture of respiratory supercomplexes, Nature, 537, 644, 10.1038/nature19774
Mühleip, 2021, ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria, Nat. Commun., 12, 120, 10.1038/s41467-020-20381-z
Orlova, 2011, Structural analysis of macromolecular assemblies by electron microscopy, Chem. Rev., 111, 7710, 10.1021/cr100353t
Palovcak, 2018, A simple and robust procedure for preparing graphene-oxide cryo-EM grids, J. Struct. Biol., 204, 80, 10.1016/j.jsb.2018.07.007
Pinke, 2020, Cryo-EM structure of the entire mammalian F-type ATP synthase, Nat. Struct. Mol. Biol., 27, 1077, 10.1038/s41594-020-0503-8
Popot, 2011, Amphipols from A to Z∗, Annu. Rev. Biophys., 40, 379, 10.1146/annurev-biophys-042910-155219
Porterfield, 2010, A simple and general method for determining the protein and nucleic acid content of viruses by UV absorbance, Virology, 407, 281, 10.1016/j.virol.2010.08.015
Rohou, 2015, CTFFIND4: fast and accurate defocus estimation from electron micrographs, J. Struct. Biol., 192, 216, 10.1016/j.jsb.2015.08.008
Russo, 2016, Progress towards an optimal specimen support for electron cryomicroscopy, Curr. Opin. Struct. Biol., 37, 81, 10.1016/j.sbi.2015.12.007
Schmidt-Krey, 2011, Electron cryomicroscopy of membrane proteins: specimen preparation for two-dimensional crystals and single particles, Micron, 42, 107, 10.1016/j.micron.2010.07.004
Sgro, 2018, Cryo-EM grid preparation of membrane protein samples for single particle analysis, Front. Mol. Biosci., 5, 74, 10.3389/fmolb.2018.00074
Sousa, 2016, Functional asymmetry and electron flow in the bovine respirasome, eLife, 5, e21290, 10.7554/eLife.21290
Steiner, 2020, Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter, eLife, 9, e59407, 10.7554/eLife.59407
Urbani, 2005, A colorimetric determination for glycosidic and bile salt-based detergents: applications in membrane protein research, Anal. Biochem., 336, 117, 10.1016/j.ab.2004.09.040
Velazhahan, 2020, Structure of the class D GPCR Ste2 dimer coupled to two G proteins, Nature, 589, 148, 10.1038/s41586-020-2994-1
Vinothkumar, 2016, Single particle electron cryomicroscopy: trends, issues and future perspective, Q. Rev. Biophys., 49, e13, 10.1017/S0033583516000068
Zhang, 2016, Gctf: Real-time CTF determination and correction, J. Struct. Biol., 193, 1, 10.1016/j.jsb.2015.11.003
Zi Tan, 2017, Addressing preferred specimen orientation in single-particle cryo-EMthrough tilting, Nat. Methods, 14, 793, 10.1038/nmeth.4347