Crown ether-thiourea conjugates as ion transporters

Springer Science and Business Media LLC - Tập 16 - Trang 81-91 - 2021
Zhixing Zhao1, Bailing Tang1, Xiaosheng Yan1, Xin Wu2, Zhao Li1, Philip A. Gale2,3, Yun-Bao Jiang1
1Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, Xiamen University, Xiamen, China
2School of Chemistry (F11), The University of Sydney, Sydney, Australia
3The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, Australia

Tóm tắt

Na+, Cl− and K+ are the most abundant electrolytes present in biological fluids that are essential to the regulation of pH homeostasis, membrane potential and cell volume in living organisms. Herein, we report synthetic crown ether-thiourea conjugates as a cation/anion symporter, which can transport both Na+ and Cl− across lipid bilayers with relatively high transport activity. Surprisingly, the ion transport activities were diminished when high concentrations of K+ ions were present outside the vesicles. This unusual behavior resulted from the strong affinity of the transporters for K+ ions, which led to predominant partitioning of the transporters as the K+ complexes in the aqueous phase preventing the transporter incorporation into the membrane. Synthetic membrane transporters with Na+, Cl− and K+ transport capabilities may have potential biological and medicinal applications.

Tài liệu tham khảo

Wu X, Howe E N W, Gale P A. Supramolecular transmembrane anion transport: new assays and insights. Accounts of Chemical Research, 2018, 51(8): 1870–1879 Fyles T M. How do amphiphiles form ion-conducting channels in membranes. Lessons from linear oligoesters. Accounts of Chemical Research, 2013, 46(12): 2847–2855 Davis A P, Sheppard D N, Smith B D. Development of synthetic membrane transporters for anions. Chemical Society Reviews, 2007, 36(2): 348–357 Zhang Z, Chen J. Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell, 2016, 167(6): 1586–1597 Konrad M, Vollmer M, Lemmink H H, Van den Heuvel L P W J, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschenes G, Antignac C, et al. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. Journal of the American Society of Nephrology, 2000, 11(8): 1449–1459 Dutzler R, Campbell E B, Cadene M, Chait B T, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature, 2002, 415(6869): 287–294 Valkenier H, Akrawi O, Jurček P, Sleziaková K, Lízal T, Bartik K, Šindelář V. Fluorinated bambusurils as highly effective and selective transmembrane Cl−/HCO3− antiporters. Chem, 2019, 5(2): 429–444 Clarke H J, Howe E N W, Wu X, Sommer F, Yano M, Light M E, Kubik S, Gale P A. Transmembrane fluoride transport: direct measurement and selectivity studies. Journal of the American Chemical Society, 2016, 138(50): 16515–16522 Roy A, Joshi H, Ye R, Shen J, Chen F, Aksimentiev A, Zeng H. Polyhydrazide-based organic nanotubes as efficient and selective artificial iodide channels. Angewandte Chemie International Edition, 2020, 59(12): 4806–4813 Busschaert N, Karagiannidis L E, Wenzel M, Haynes C J E, Wells N J, Young P G, Makuc D, Plavec J, Jolliffe K A, Gale P A. Synthetic transporters for sulfate: a new method for the direct detection of lipid bilayer sulfate transport. Chemical Science (Cambridge), 2014, 5(3): 1118–1127 Wu X, Judd L W, Howe E N W, Withecombe A M, Soto-Cerrato V, Li H, Busschaert N, Valkenier H, Perez-Tomas R, Sheppard D N, et al. Nonprotonophoric electrogenic Cl− transport mediated by valinomycin-like carriers. Chem, 2016, 1(1): 127–146 Davis J T, Gale P A, Quesada R. Advances in anion transport and supramolecular medicinal chemistry. Chemical Society Reviews, 2020, 49(16): 6056–6086 Ren C, Zeng F, Shen J, Chen F, Roy A, Zhou S, Ren H, Zeng H. Pore-forming monopeptides as exceptionally active anion channels. Journal of the American Chemical Society, 2018, 140(28): 8817–8826 Spooner M J, Li H, Marques I, Costa P M R, Wu X, Howe E N W, Busschaert N, Moore S J, Light M E, Sheppard D N, et al. Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chemical Science (Cambridge), 2019, 10(7): 1976–1985 Gokel G W, Mukhopadhyay A. Synthetic models of cation-conducting channels. Chemical Society Reviews, 2001, 30(5): 274–286 Yu F H, Catterall W A. Overview of the voltage-gated sodium channel family. Genome Biology, 2003, 4(3): 207 Goldin A L. Resurgence of sodium channel research. Annual Review of Physiology, 2001, 63(1): 871–894 Payandeh J, Scheuer T, Zheng N, Catterall W A. The crystal structure of a voltage-gated sodium channel. Nature, 2011, 475(7356): 353–358 Ryan D P, Ptacek L J. Episodic neurological channelopathies. Neuron, 2010, 68(2): 282–292 Jentsch T J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Reviews. Neuroscience, 2000, 1(1): 21–30 Sanguinetti M C, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature, 2006, 440(7083): 463–469 Russell J M. Sodium-potassium-chloride cotransport. Physiological Reviews, 2000, 80(1): 211–276 Simon D B, Karet F E, Hamdan J M, Pietro A D, Sanjad S A, Lifton R P. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nature Genetics, 1996, 13(2): 183–188 Tong C C, Quesada R, Sessler J L, Gale P A. Meso-Octamethylcalix [4]pyrrole: an old yet new transmembrane ion-pair transporter. Chemical Communications, 2008, (47): 6321–6323 Fisher M G, Gale P A, Hiscock J R, Hursthouse M B, Light M E, Schmidtchen F P, Tong C C. 1,2,3-Triazole-strapped calix[4] pyrrole: a new membrane transporter for chloride. Chemical Communications, 2009, 21(21): 3017–3019 Koulov A V, Mahoney J M, Smith B D. Facilitated transport of sodium or potassium chloride across vesicle membranes using a ditopic salt-binding macrobicycle. Organic & Biomolecular Chemistry, 2003, 1(1): 27–29 Lee J H, Lee J H, Choi Y R, Kang P, Choi M G, Jeong K S. Synthetic K+/Cl−-selective symporter across a phospholipid membrane. Journal of Organic Chemistry, 2014, 79(14): 6403–6409 Yu X H, Cai X J, Hong X Q, Tam K Y, Zhang K, Chen W H. Synthesis and biological evaluation of aza-crown ether-squaramide conjugates as anion/cation symporters. Future Medicinal Chemistry, 2019, 11(10): 1091–1106 Sun Z, Barboiu M, Legrand Y M, Petit E, Rotaru A. Highly selective artificial cholesteryl crown ether K+-channels. Angewandte Chemie International Edition, 2015, 54(48): 14473–14477 Gilles A, Barboiu M. Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. Journal of the American Chemical Society, 2016, 138(1): 426–432 Li Y H, Zheng S, Legrand Y M, Gilles A, van der Lee A, Barboiu M. Structure-driven selection of adaptive transmembrane Na+ carriers or K+ channels. Angewandte Chemie International Edition, 2018, 57(33): 10520–10524 Chen S, Wang Y, Nie T, Bao C, Wang C, Xu T, Lin Q, Qu D H, Gong X, Yang Y, Zhu L, Tian H. An artificial molecular shuttle operates in lipid bilayers for ion transport. Journal of the American Chemical Society, 2018, 140(51): 17992–17998 Wu F Y, Li Z, Guo L, Wang X, Lin M H, Zhao Y F, Jiang Y B. A unique NH-spacer for N-benzamidothiourea based anion sensors. Substituent effect on anion sensing of the ICT dual fluorescent N-(p-dimethylaminobenzamido)-N′-arylthioureas. Organic & Biomolecular Chemistry, 2006, 4(4): 624–630 Li A F, Wang J H, Wang F, Jiang Y B. Anion complexation and sensing using modified urea and thiourea-based receptors. Chemical Society Reviews, 2010, 39(10): 3729–3745 Villa M, Bergamini G, Ceroni P, Baroncini M. Photocontrolled self-assembly of azobenzene nanocontainers in water: light-triggered uptake and release of lipophilic molecules. Chemical Communications, 2019, 55(79): 11860–11863 Du Z, Ren B, Chang X, Dong R, Peng J, Tong Z. Aggregation and rheology of an azobenzene-functionalized hydrophobically modified ethoxylated urethane in aqueous solution. Macromolecules, 2016, 49(13): 4978–4988 Otis F, Racine-Berthiaume C, Voyer N. How far can a sodium ion travel within a lipid bilayer? Journal of the American Chemical Society, 2011, 133(17): 6481–6483 Yang Y, Wu X, Busschaert N, Furuta H, Gale P A. Dissecting the chloride-nitrate anion transport assay. Chemical Communications, 2017, 53(66): 9230–9233 Vargas Jentzsch A, Emery D, Mareda J, Metrangolo P, Resnati G, Matile S. Ditopic ion transport systems: anion-π interactions and halogen bonds at work. Angewandte Chemie International Edition, 2011, 50(49): 11675–11678 Busschaert N, Wenzel M, Light M E, Iglesias-Hernandez P, Perez-Tomas R, Gale P A. Structure-activity relationships in tripodal transmembrane anion transporters: the effect of fluorination. Journal of the American Chemical Society, 2011, 133(35): 14136–14148 Valkenier H, Haynes C J E, Herniman J, Gale P A, Davis A P. Lipophilic balance—a new design principle for transmembrane anion carriers. Chemical Science (Cambridge), 2014, 5(3): 1128–1134 Ren C, Shen J, Zeng H. Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers. Journal of the American Chemical Society, 2017, 139(36): 12338–12341 Ren C, Chen F, Ye R, Ong Y S, Lu H, Lee S S, Ying J Y, Zeng H. Molecular swings as highly active ion transporters. Angewandte Chemie International Edition, 2019, 58(24): 8034–8038 Ye R, Ren C, Shen J, Li N, Chen F, Roy A, Zeng H. Molecular ion fishers as highly active and exceptionally selective K+ transporters. Journal of the American Chemical Society, 2019, 141(25): 9788–9792 Liu T, Bao C, Wang H, Lin Y, Jia H, Zhu L. Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis-trans photoisomerization. Chemical Communications, 2013, 49(87): 10311–10313 Sun Z, Gilles A, Kocsis I, Legrand Y M, Petit E, Barboiu M. Squalyl crown ether self-assembled conjugates: an example of highly selective artificial K+ channels. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(6): 2158–2164 Schneider S, Licsandru E D, Kocsis I, Gilles A, Dumitru F, Moulin E, Tan J, Lehn J M, Giuseppone N, Barboiu M. Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. Journal of the American Chemical Society, 2017, 139(10): 3721–3727 Wu X, Small J R, Cataldo A, Withecombe A M, Turner P, Gale P A. Voltage-switchable HCl transport enabled by lipid headgroup-transporter interactions. Angewandte Chemie International Edition, 2019, 58(42): 15142–15147 Wu X, Busschaert N, Wells N J, Jiang Y B, Gale P A. Dynamic covalent transport of amino acids across lipid bilayers. Journal of the American Chemical Society, 2015, 137(4): 1476–1484 Zheng S P, Huang L B, Sun Z, Barboiu M. Self-assembled artificial ion-channels toward natural selection of functions. Angewandte Chemie International Edition, 2021, 60(2): 566–597