Crown ether-thiourea conjugates as ion transporters
Tóm tắt
Na+, Cl− and K+ are the most abundant electrolytes present in biological fluids that are essential to the regulation of pH homeostasis, membrane potential and cell volume in living organisms. Herein, we report synthetic crown ether-thiourea conjugates as a cation/anion symporter, which can transport both Na+ and Cl− across lipid bilayers with relatively high transport activity. Surprisingly, the ion transport activities were diminished when high concentrations of K+ ions were present outside the vesicles. This unusual behavior resulted from the strong affinity of the transporters for K+ ions, which led to predominant partitioning of the transporters as the K+ complexes in the aqueous phase preventing the transporter incorporation into the membrane. Synthetic membrane transporters with Na+, Cl− and K+ transport capabilities may have potential biological and medicinal applications.
Tài liệu tham khảo
Wu X, Howe E N W, Gale P A. Supramolecular transmembrane anion transport: new assays and insights. Accounts of Chemical Research, 2018, 51(8): 1870–1879
Fyles T M. How do amphiphiles form ion-conducting channels in membranes. Lessons from linear oligoesters. Accounts of Chemical Research, 2013, 46(12): 2847–2855
Davis A P, Sheppard D N, Smith B D. Development of synthetic membrane transporters for anions. Chemical Society Reviews, 2007, 36(2): 348–357
Zhang Z, Chen J. Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell, 2016, 167(6): 1586–1597
Konrad M, Vollmer M, Lemmink H H, Van den Heuvel L P W J, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschenes G, Antignac C, et al. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. Journal of the American Society of Nephrology, 2000, 11(8): 1449–1459
Dutzler R, Campbell E B, Cadene M, Chait B T, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature, 2002, 415(6869): 287–294
Valkenier H, Akrawi O, Jurček P, Sleziaková K, Lízal T, Bartik K, Šindelář V. Fluorinated bambusurils as highly effective and selective transmembrane Cl−/HCO3− antiporters. Chem, 2019, 5(2): 429–444
Clarke H J, Howe E N W, Wu X, Sommer F, Yano M, Light M E, Kubik S, Gale P A. Transmembrane fluoride transport: direct measurement and selectivity studies. Journal of the American Chemical Society, 2016, 138(50): 16515–16522
Roy A, Joshi H, Ye R, Shen J, Chen F, Aksimentiev A, Zeng H. Polyhydrazide-based organic nanotubes as efficient and selective artificial iodide channels. Angewandte Chemie International Edition, 2020, 59(12): 4806–4813
Busschaert N, Karagiannidis L E, Wenzel M, Haynes C J E, Wells N J, Young P G, Makuc D, Plavec J, Jolliffe K A, Gale P A. Synthetic transporters for sulfate: a new method for the direct detection of lipid bilayer sulfate transport. Chemical Science (Cambridge), 2014, 5(3): 1118–1127
Wu X, Judd L W, Howe E N W, Withecombe A M, Soto-Cerrato V, Li H, Busschaert N, Valkenier H, Perez-Tomas R, Sheppard D N, et al. Nonprotonophoric electrogenic Cl− transport mediated by valinomycin-like carriers. Chem, 2016, 1(1): 127–146
Davis J T, Gale P A, Quesada R. Advances in anion transport and supramolecular medicinal chemistry. Chemical Society Reviews, 2020, 49(16): 6056–6086
Ren C, Zeng F, Shen J, Chen F, Roy A, Zhou S, Ren H, Zeng H. Pore-forming monopeptides as exceptionally active anion channels. Journal of the American Chemical Society, 2018, 140(28): 8817–8826
Spooner M J, Li H, Marques I, Costa P M R, Wu X, Howe E N W, Busschaert N, Moore S J, Light M E, Sheppard D N, et al. Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chemical Science (Cambridge), 2019, 10(7): 1976–1985
Gokel G W, Mukhopadhyay A. Synthetic models of cation-conducting channels. Chemical Society Reviews, 2001, 30(5): 274–286
Yu F H, Catterall W A. Overview of the voltage-gated sodium channel family. Genome Biology, 2003, 4(3): 207
Goldin A L. Resurgence of sodium channel research. Annual Review of Physiology, 2001, 63(1): 871–894
Payandeh J, Scheuer T, Zheng N, Catterall W A. The crystal structure of a voltage-gated sodium channel. Nature, 2011, 475(7356): 353–358
Ryan D P, Ptacek L J. Episodic neurological channelopathies. Neuron, 2010, 68(2): 282–292
Jentsch T J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Reviews. Neuroscience, 2000, 1(1): 21–30
Sanguinetti M C, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature, 2006, 440(7083): 463–469
Russell J M. Sodium-potassium-chloride cotransport. Physiological Reviews, 2000, 80(1): 211–276
Simon D B, Karet F E, Hamdan J M, Pietro A D, Sanjad S A, Lifton R P. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nature Genetics, 1996, 13(2): 183–188
Tong C C, Quesada R, Sessler J L, Gale P A. Meso-Octamethylcalix [4]pyrrole: an old yet new transmembrane ion-pair transporter. Chemical Communications, 2008, (47): 6321–6323
Fisher M G, Gale P A, Hiscock J R, Hursthouse M B, Light M E, Schmidtchen F P, Tong C C. 1,2,3-Triazole-strapped calix[4] pyrrole: a new membrane transporter for chloride. Chemical Communications, 2009, 21(21): 3017–3019
Koulov A V, Mahoney J M, Smith B D. Facilitated transport of sodium or potassium chloride across vesicle membranes using a ditopic salt-binding macrobicycle. Organic & Biomolecular Chemistry, 2003, 1(1): 27–29
Lee J H, Lee J H, Choi Y R, Kang P, Choi M G, Jeong K S. Synthetic K+/Cl−-selective symporter across a phospholipid membrane. Journal of Organic Chemistry, 2014, 79(14): 6403–6409
Yu X H, Cai X J, Hong X Q, Tam K Y, Zhang K, Chen W H. Synthesis and biological evaluation of aza-crown ether-squaramide conjugates as anion/cation symporters. Future Medicinal Chemistry, 2019, 11(10): 1091–1106
Sun Z, Barboiu M, Legrand Y M, Petit E, Rotaru A. Highly selective artificial cholesteryl crown ether K+-channels. Angewandte Chemie International Edition, 2015, 54(48): 14473–14477
Gilles A, Barboiu M. Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. Journal of the American Chemical Society, 2016, 138(1): 426–432
Li Y H, Zheng S, Legrand Y M, Gilles A, van der Lee A, Barboiu M. Structure-driven selection of adaptive transmembrane Na+ carriers or K+ channels. Angewandte Chemie International Edition, 2018, 57(33): 10520–10524
Chen S, Wang Y, Nie T, Bao C, Wang C, Xu T, Lin Q, Qu D H, Gong X, Yang Y, Zhu L, Tian H. An artificial molecular shuttle operates in lipid bilayers for ion transport. Journal of the American Chemical Society, 2018, 140(51): 17992–17998
Wu F Y, Li Z, Guo L, Wang X, Lin M H, Zhao Y F, Jiang Y B. A unique NH-spacer for N-benzamidothiourea based anion sensors. Substituent effect on anion sensing of the ICT dual fluorescent N-(p-dimethylaminobenzamido)-N′-arylthioureas. Organic & Biomolecular Chemistry, 2006, 4(4): 624–630
Li A F, Wang J H, Wang F, Jiang Y B. Anion complexation and sensing using modified urea and thiourea-based receptors. Chemical Society Reviews, 2010, 39(10): 3729–3745
Villa M, Bergamini G, Ceroni P, Baroncini M. Photocontrolled self-assembly of azobenzene nanocontainers in water: light-triggered uptake and release of lipophilic molecules. Chemical Communications, 2019, 55(79): 11860–11863
Du Z, Ren B, Chang X, Dong R, Peng J, Tong Z. Aggregation and rheology of an azobenzene-functionalized hydrophobically modified ethoxylated urethane in aqueous solution. Macromolecules, 2016, 49(13): 4978–4988
Otis F, Racine-Berthiaume C, Voyer N. How far can a sodium ion travel within a lipid bilayer? Journal of the American Chemical Society, 2011, 133(17): 6481–6483
Yang Y, Wu X, Busschaert N, Furuta H, Gale P A. Dissecting the chloride-nitrate anion transport assay. Chemical Communications, 2017, 53(66): 9230–9233
Vargas Jentzsch A, Emery D, Mareda J, Metrangolo P, Resnati G, Matile S. Ditopic ion transport systems: anion-π interactions and halogen bonds at work. Angewandte Chemie International Edition, 2011, 50(49): 11675–11678
Busschaert N, Wenzel M, Light M E, Iglesias-Hernandez P, Perez-Tomas R, Gale P A. Structure-activity relationships in tripodal transmembrane anion transporters: the effect of fluorination. Journal of the American Chemical Society, 2011, 133(35): 14136–14148
Valkenier H, Haynes C J E, Herniman J, Gale P A, Davis A P. Lipophilic balance—a new design principle for transmembrane anion carriers. Chemical Science (Cambridge), 2014, 5(3): 1128–1134
Ren C, Shen J, Zeng H. Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers. Journal of the American Chemical Society, 2017, 139(36): 12338–12341
Ren C, Chen F, Ye R, Ong Y S, Lu H, Lee S S, Ying J Y, Zeng H. Molecular swings as highly active ion transporters. Angewandte Chemie International Edition, 2019, 58(24): 8034–8038
Ye R, Ren C, Shen J, Li N, Chen F, Roy A, Zeng H. Molecular ion fishers as highly active and exceptionally selective K+ transporters. Journal of the American Chemical Society, 2019, 141(25): 9788–9792
Liu T, Bao C, Wang H, Lin Y, Jia H, Zhu L. Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis-trans photoisomerization. Chemical Communications, 2013, 49(87): 10311–10313
Sun Z, Gilles A, Kocsis I, Legrand Y M, Petit E, Barboiu M. Squalyl crown ether self-assembled conjugates: an example of highly selective artificial K+ channels. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(6): 2158–2164
Schneider S, Licsandru E D, Kocsis I, Gilles A, Dumitru F, Moulin E, Tan J, Lehn J M, Giuseppone N, Barboiu M. Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. Journal of the American Chemical Society, 2017, 139(10): 3721–3727
Wu X, Small J R, Cataldo A, Withecombe A M, Turner P, Gale P A. Voltage-switchable HCl transport enabled by lipid headgroup-transporter interactions. Angewandte Chemie International Edition, 2019, 58(42): 15142–15147
Wu X, Busschaert N, Wells N J, Jiang Y B, Gale P A. Dynamic covalent transport of amino acids across lipid bilayers. Journal of the American Chemical Society, 2015, 137(4): 1476–1484
Zheng S P, Huang L B, Sun Z, Barboiu M. Self-assembled artificial ion-channels toward natural selection of functions. Angewandte Chemie International Edition, 2021, 60(2): 566–597