Crowd analysis using Bayesian Risk Kernel Density Estimation
Tài liệu tham khảo
Ankerst, 1999, OPTICS: ordering points to identify the clustering structure, 49
Boyd, 2004
Breunig, 1999, Optics-of: Identifying local outliers, 262
Brown, 2007, Automatic panoramic image stitching using invariant features, Int. J. Comput. Vis., 74, 59, 10.1007/s11263-006-0002-3
Chen, Ke, Gong, Shaogang, Xiang, Tao, Change Loy, Chen, 2013. Cumulative attribute space for age and crowd density estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2467–2474.
Chen, 2012, Feature mining for localised crowd counting, 3
Cheng, 1995, Mean shift, mode seeking, and clustering, IEEE Trans. Pattern Anal. Mach. Intell., 17, 790, 10.1109/34.400568
Comaniciu, 2002, Mean shift: A robust approach toward feature space analysis, IEEE Trans. Pattern Anal. Mach. Intell., 24, 603, 10.1109/34.1000236
Current World Population, 2018
Dalal, 2005, Histograms of oriented gradients for human detection, 886
Ester, 1996, A density-based algorithm for discovering clusters in large spatial databases with noise, 226
Ferryman, 2009, Pets2009: Dataset and challenge, 1
Fradi, 2013, Crowd density map estimation based on feature tracks, 040
Fradi, 2015, Spatio-temporal crowd density model in a human detection and tracking framework, Signal Process., Image Commun., 31, 100, 10.1016/j.image.2014.11.006
Fränti, 2018
Fränti, 2006, Iterative shrinking method for clustering problems, Pattern Recognit., 39, 761, 10.1016/j.patcog.2005.09.012
Fu, 2015, Fast crowd density estimation with convolutional neural networks, Eng. Appl. Artif. Intell., 43, 81, 10.1016/j.engappai.2015.04.006
Geng, 2018, RECOME: a new density-based clustering algorithm using relative KNN kernel density, Inform. Sci., 436, 13, 10.1016/j.ins.2018.01.013
Han, 2011
He, 2017, A kernel-power-density-based algorithm for channel multipath components clustering, IEEE Trans. Wirel. Commun., 16, 7138, 10.1109/TWC.2017.2740206
Howard, 2017
Hunter, 2012
Idrees, 2015, Detecting humans in dense crowds using locally-consistent scale prior and global occlusion reasoning, IEEE Trans. Pattern Anal. Mach. Intell., 37, 1986, 10.1109/TPAMI.2015.2396051
Kaufman, 2009
Kriegel, 2011, Density-based clustering, Wiley Interdiscip. Rev. Data Mining Knowl. Discov., 1, 231, 10.1002/widm.30
Liu, 2016, Ssd: Single shot multibox detector, 21
MacQueen, 1967, Some methods for classification and analysis of multivariate observations, 281
Network live IP video cameras directory Insecam.com, 2017
Park, 2009, A simple and fast algorithm for K-medoids clustering, Expert Syst. Appl., 36, 3336, 10.1016/j.eswa.2008.01.039
Parzen, 1962, On estimation of a probability density function and mode, Annal. Math. Stat., 33, 1065, 10.1214/aoms/1177704472
Qiu, 2017, User clustering in a dynamic social network topic model for short text streams, Inform. Sci., 414, 102, 10.1016/j.ins.2017.05.018
Rasmussen, 2000, The infinite Gaussian mixture model, 554
Redmon, 2018
Rodriguez, 2011, Density-aware person detection and tracking in crowds, 2423
Rokach, 2005, Clustering methods, 321
Saleh, 2015, Recent survey on crowd density estimation and counting for visual surveillance, Eng. Appl. Artif. Intell., 41, 103, 10.1016/j.engappai.2015.01.007
Schneider, 2013, Fast parameterless density-based clustering via random projections, 861
Sibson, 1973, SLINK: an optimally efficient algorithm for the single-link cluster method, Comput. J., 16, 30, 10.1093/comjnl/16.1.30
Silverman, 1986
Sindagi, 2018, A survey of recent advances in cnn-based single image crowd counting and density estimation, Pattern Recognit. Lett., 107, 3, 10.1016/j.patrec.2017.07.007
Steinwart, 2008
Xu, 1998, A distribution-based clustering algorithm for mining in large spatial databases, 324
Xu, 2015, A comprehensive survey of clustering algorithms, Ann. Data Sci., 2, 165, 10.1007/s40745-015-0040-1
Ye, 2003, Color image segmentation using density-based clustering, II