Cross-validation methods in principal component analysis: A comparison

Journal of the Italian Statistical Society - Tập 11 Số 1 - Trang 71-82 - 2002
Giancarlo Diana1, Chiara Tommasi1
1Dipartimento di Scienze Statistiche, Università di Padova, Padova, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bartlett MS (1950) Test of significance in factor analysis.Br. J. Psych. Stat. 3: 77–85

Cattel RB (1966) The Scree test for the number of factors.Mult. Behav. Res. 1: 245–276

Eastment HT, Krzanowski WJ (1982) Cross-validatory choice of the number of component analysis.Technometrics 24: 73–77

Forina M, Lanteri S, Boggia R, Bertran E (1993) Double cross full validation.Química Analítica 12: 128–135

Heiberger RM (1978) AS 127. Generation of random orthogonal matrices.Applied Statistics 27: 199–206

Jackson JE (1991) A user's guide to principal components. Wiley, New York

Jeffers JNR (1967) Two case studies in the application of principal components analysis.Applied Statistics 16: 225–236

Jolliffe IT (1986) Principal component analysis. Springer, Berlin Heidelberg New York

Kaiser HF (1960) The application of electronic computers to factor analysis.Educ. Psychol. Meas. 20: 141–151

Krzanowski WJ (1983) Cross-validatory choice of the number inPprincipal component analysis; some sampling results.J. Statist. Comput. Simul. 18: 299–314

Krzanowski WJ (1987) Cross-validation in principal component analysis.Biometrics 43: 575–584

Krzanowski WJ (1987) Selection of variables to preserve multivariate data structure, using principal components.Applied Statistics 36: 22–33

Malinowski ER (1977) Theory of error in factor analysis.Analytical Chemistry 49: 606–612

Minka TP Automatic choice of dimensionality for PCA. Technical Report n. 514 (2000), MIT Media Laboratory, Vision and Modelling Group. http://citeseer.nj.nec.com/minkaooautomaic.html

Scarponi G, Moret I, Capodaglio G, Romanazzi M (1990) Cross-validation, influential observations and selection of variables in chemometric studies of wines by principal component analysis.Journal of Chemometrics 4: 217–240

Wold S (1976) Pattern recognition by means of disjoint principal components models.Pattern Recognition 8: 127–139

Wold S (1978) Cross-validatory estimation of the number of components in factor and principal components models.Technometrics 20: 397–405

Wold H, Lyttkens E (1969) Nonlinear iterative partial least squares (NIPALS) estimation procedures, Bull. Intern. Statist. Inst.: Proc. 37th Session, pp. 1–15. London