Cross-scale microstructure design of precursor-derived SiC-AlN nanoceramic composites hybrid with ex-situ ZrB2

Advanced Powder Materials - Tập 2 - Trang 100063 - 2023
Aidong Xia1,2, Buhao Zhang1, Jie Yin1,2, Xiao Chen1,2, Sea-Hoon Lee3, Xuejian Liu1, Zhengren Huang1,4
1State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai, Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3Ceramic Materials Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
4Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

Tài liệu tham khảo

Su, 2015, The effect of in situ synthesized AlN on densification of SiC ceramics by pressureless sintering, Ceram. Int., 41, 14172, 10.1016/j.ceramint.2015.07.040 Lu, 2013, Fabricating hollow turbine blades using short carbon fiber-reinforced SiC composite, Int. J. Adv. Manuf. Technol., 69, 417, 10.1007/s00170-013-5049-z Kunka, 2015, Interaction of indentation-induced cracks on single-crystal silicon carbide, J. Am. Ceram. Soc., 98, 1891, 10.1111/jace.13525 Li, 2021, Bearing behaviors and failure mechanisms of 2D C/SiC plate with an open hole, Ceram. Int., 47, 1407, 10.1016/j.ceramint.2020.08.264 Wen, 2020, The fate and role of in situ formed carbon in polymer-derived ceramics, Prog. Mater. Sci., 109, 10.1016/j.pmatsci.2019.100623 Xia, 2020, Polymer-derived Si-based ceramics: Recent developments and perspectives, Crystals, 10, 824, 10.3390/cryst10090824 Wen, 2022, Si-based polymer-derived ceramics for energy conversion and storage, J. Adv. Ceram., 11, 197, 10.1007/s40145-021-0562-2 Zou, 2020, Nanoceramic composites with duplex microstructure break the strength-toughness tradeoff, J. Mater. Sci. Technol., 58, 1, 10.1016/j.jmst.2020.05.014 Liu, 2012, Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation, Mater. Res. Bull., 47, 917, 10.1016/j.materresbull.2011.12.046 Yang, 2013, Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light, Appl. Phys. Lett., 102 Chiu, 2010, High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range, J. Phys. Chem. C, 114, 1947, 10.1021/jp905127t Duan, 2020, Nano-porous carbon wrapped SiC nanowires with tunable dielectric properties for electromagnetic applications, Mater. Des., 192, 10.1016/j.matdes.2020.108738 Chen, 2011, P-type 3C-SiC nanowires and their optical and electrical transport properties, Chem. Commun. (J. Chem. Soc. Sect. D), 47, 6398, 10.1039/c1cc10863h Wang, 2011, Large-scale synthesis of hydrophobic SiC/C nanocables with enhanced electrical properties, J. Phys. D Appl. Phys., 44, 10.1088/0022-3727/44/24/245404 Kim, 2020, Processing and properties of silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity, J. Eur. Ceram. Soc., 40, 2623, 10.1016/j.jeurceramsoc.2019.11.072 Valentın, 2013, A comprehensive study of thermoelectric and transport properties of β-silicon carbide nanowires, J. Appl. Phys., 114, 10.1063/1.4829924 Nakahira, 1992, Sintering behaviors and consolidation process for Al2O3/SiC nanocomposites, J. Ceram. Soc. Jpn., 100, 448, 10.2109/jcersj.100.448 Wang, 2016, Unique mechanical properties of nano-grained YAG transparent ceramics compared with coarse-grained partners, Mater. Des., 105, 9, 10.1016/j.matdes.2016.04.094 Wu, 2015, Recent progress in synthesis, properties and potential applications of SiC nanomaterials, Prog. Mater. Sci., 72, 1, 10.1016/j.pmatsci.2015.01.003 Fu, 2019, Organosilicon polymer-derived ceramics: An overview, J. Adv. Ceram., 8, 457, 10.1007/s40145-019-0335-3 Colombo, 2010, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics, J. Am. Ceram. Soc., 93, 1805, 10.1111/j.1551-2916.2010.03876.x Yu, 2022, Single-source-precursor synthesis and phase evolution of NbC-SiC-C ceramic nanocomposites with core shell structured NbC@C and SiC@C nanoparticles, Adv. Powder Mater., 1 Saha, 2006, A model for the nanodomains in polymer-derived SiCO, J. Am. Ceram. Soc., 89, 2188, 10.1111/j.1551-2916.2006.00920.x Lu, 2015, Densification behavior and microstructure evolution of hot-pressed SiC-SiBCN ceramics, Ceram. Int., 41, 8541, 10.1016/j.ceramint.2015.03.061 He, 2019, Fabrication of SiC ceramic architectures using stereolithography combined with precursor infiltration and pyrolysis, Ceram. Int., 45, 14006, 10.1016/j.ceramint.2019.04.100 Bechelany, 2015, Preparation of polymer-derived Si–B–C–N monoliths by spark plasma sintering technique, J. Eur. Ceram. Soc., 35, 1361, 10.1016/j.jeurceramsoc.2014.11.021 Chen, 2018, Potential-current characteristics in SiC/ZrB2 composite ceramics, J. Eur. Ceram. Soc., 38, 2477, 10.1016/j.jeurceramsoc.2018.01.020 Chen, 2018, Effect of sintering temperature on electrical properties of SiC/ZrB2 ceramics, J. Eur. Ceram. Soc., 38, 3083, 10.1016/j.jeurceramsoc.2018.03.039 Kobayashi, 2006, Temperature dependence of the electrical properties and Seebeck coefficient of AlN-SiC ceramics, J. Am. Ceram. Soc., 89, 1295, 10.1111/j.1551-2916.2005.00837.x Ruh, 1982, Composition and properties of hot-pressed SiC-AlN solid solutions, J. Am. Ceram. Soc., 65, 260, 10.1111/j.1151-2916.1982.tb10429.x Liang, 2016, Effect of sintering techniques on the microstructure of liquid-phase-sintered SiC ceramics, J. Eur. Ceram. Soc., 36, 1863, 10.1016/j.jeurceramsoc.2016.01.018 Shaffer, 1969, The SiC phase in the system SiC-B4C-C, Mater. Res. Bull., 4, 213, 10.1016/0025-5408(69)90058-0 Li, 1998, Hot isostatically pressed SiC-AlN powder mixtures: effect of milling on solid-solution formation and related properties, J. Am. Ceram. Soc., 81, 1445, 10.1111/j.1151-2916.1998.tb02502.x Lubis, 1999, Microstructure-property relations of hot-pressed silicon carbide-aluminum nitride compositions at room and elevated temperatures, J. Am. Ceram. Soc., 82, 2481, 10.1111/j.1151-2916.1999.tb02107.x Chen, 1997, High preformation SiC-AlN composites, J. Mater. Sci. Technol., 13, 342 Zhang, 2021, Low temperature densification mechanism and properties of Ta1-xHfxC solid solutions with decarbonization and phase transition of Cr3C2, J. Materiomics, 7, 672, 10.1016/j.jmat.2020.12.001 Zangvil, 1988, Phase relationships in the silicon carbide-aluminum nitride system, J. Am. Ceram. Soc., 71, 884, 10.1111/j.1151-2916.1988.tb07541.x Nasiri, 2019, Microstructure and mechanical behavior of ternary phase ZrB2-SiC-AlN nanocomposite, Int. J. Refract. Met. H., 78, 186, 10.1016/j.ijrmhm.2018.09.009 Yu, 2020, Role of in-situ formed free carbon on electromagnetic absorption properties of polymer-derived SiC ceramics, J. Adv. Ceram., 9, 617, 10.1007/s40145-020-0401-x Zhu, 2020, High infrared emissivity of SiC-AlN ceramics at room temperature, J. Eur. Ceram. Soc., 40, 3528, 10.1016/j.jeurceramsoc.2020.04.012 Hu, 2007, Core-shell structure from the solution-reprecipitation process in hot-pressed AlN-doped SiC ceramics, Acta Mater., 55, 5666, 10.1016/j.actamat.2007.06.037 Xia, 2021, Fabrication of (SiC-AlN)/ZrB2 composite with nano-micron hybrid microstructure via PCS-derived ceramics route, Materials, 14, 334, 10.3390/ma14020334 Lv, 2019, Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology, J. Eur. Ceram. Soc., 39, 3380, 10.1016/j.jeurceramsoc.2019.04.043 Feng, 2020, Effect of ZrB2 content on the densification, microstructure, and mechanical properties of ZrC-SiC ceramics, J. Eur. Ceram. Soc., 40, 220, 10.1016/j.jeurceramsoc.2019.09.052 Swanson, 1987, Crack-interface grain bridging as a fracture resistance mechanism in ceramics: I, experimental study on alumina, J. Am. Ceram. Soc., 70, 279, 10.1111/j.1151-2916.1987.tb04982.x Kultayeva, 2020, Mechanical, thermal, and electrical properties of pressureless sintered SiC-AlN ceramics, Ceram. Int., 46, 19264, 10.1016/j.ceramint.2020.04.266 Balestrat, 2020, Additive-free low temperature sintering of amorphous Si–B–C powders derived from boron-modified polycarbosilanes: toward the design of SiC with tunable mechanical, electrical and thermal properties, J. Eur. Ceram. Soc., 40, 2604, 10.1016/j.jeurceramsoc.2019.12.037 Shah, 2002, Mechanical properties of a fully dense polymer derived ceramic made by a novel pressure casting process, Acta Mater., 50, 4093, 10.1016/S1359-6454(02)00206-9 Chen, 2014, Effects of polymer derived SiC interphase on the properties of C/ZrC composites, Mater. Des., 58, 102, 10.1016/j.matdes.2014.01.039 An, 2004, Carbon-nanotube-reinforced polymer-derived ceramic composites, Adv. Mater., 16, 10.1002/adma.200306241 Liu, 2018, Design of polymer-derived SiC for nuclear applications from the perspective of heterogeneous interfaces, J. Eur. Ceram. Soc., 38, 469, 10.1016/j.jeurceramsoc.2017.08.036 Wang, 2015, Microstructure and mechanical properties of SiCf/SiBCN ceramic matrix composites, J. Adv. Ceram., 4, 31, 10.1007/s40145-015-0128-2 Moraes, 2003, Processing, fracture toughness, and Vickers hardness of allylhydridopolycarbosilane-derived silicon carbide, J. Am. Ceram. Soc., 86, 342, 10.1111/j.1151-2916.2003.tb00020.x Laadoua, 2020, Preparation of ZrC/SiC composites by using polymer-derived ceramics and spark plasma sintering, J. Eur. Ceram. Soc., 40, 1811, 10.1016/j.jeurceramsoc.2019.12.019 Razdan, 2005, Low temperature specific heat of glasses: A non-extensive approach, Phys. Lett., 341, 504, 10.1016/j.physleta.2005.04.027 Talwar, 1995, Thermal expansion coefficient of 3C-SiC, Appl. Phys. Lett., 67, 3301, 10.1063/1.115227 Yu, 2021, Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: The effect of pyrolytic carbon, J. Eur. Ceram. Soc., 41, 3823, 10.1016/j.jeurceramsoc.2021.01.048 Kim, 2015, Electrical and thermal properties of SiC-AlN ceramics without sintering additives, J. Eur. Ceram. Soc., 35, 2715, 10.1016/j.jeurceramsoc.2015.04.010 Ou, 2003, Electrical properties of SiC-AlN composites, Ceram. Eng. Sci. Proc., 24, 349, 10.1002/9780470294826.ch51 Feng, 2019, Investigation of electrical properties of pressureless sintered ZrB2-based ceramics, Ceram. Int., 45, 7717, 10.1016/j.ceramint.2019.01.073 Greuter, 1990, Electrical properties of grain boundaries in polycrystalline compound semiconductors, Semicond. Sci. Technol., 5, 111, 10.1088/0268-1242/5/2/001