Cross-scale microstructure design of precursor-derived SiC-AlN nanoceramic composites hybrid with ex-situ ZrB2
Tài liệu tham khảo
Su, 2015, The effect of in situ synthesized AlN on densification of SiC ceramics by pressureless sintering, Ceram. Int., 41, 14172, 10.1016/j.ceramint.2015.07.040
Lu, 2013, Fabricating hollow turbine blades using short carbon fiber-reinforced SiC composite, Int. J. Adv. Manuf. Technol., 69, 417, 10.1007/s00170-013-5049-z
Kunka, 2015, Interaction of indentation-induced cracks on single-crystal silicon carbide, J. Am. Ceram. Soc., 98, 1891, 10.1111/jace.13525
Li, 2021, Bearing behaviors and failure mechanisms of 2D C/SiC plate with an open hole, Ceram. Int., 47, 1407, 10.1016/j.ceramint.2020.08.264
Wen, 2020, The fate and role of in situ formed carbon in polymer-derived ceramics, Prog. Mater. Sci., 109, 10.1016/j.pmatsci.2019.100623
Xia, 2020, Polymer-derived Si-based ceramics: Recent developments and perspectives, Crystals, 10, 824, 10.3390/cryst10090824
Wen, 2022, Si-based polymer-derived ceramics for energy conversion and storage, J. Adv. Ceram., 11, 197, 10.1007/s40145-021-0562-2
Zou, 2020, Nanoceramic composites with duplex microstructure break the strength-toughness tradeoff, J. Mater. Sci. Technol., 58, 1, 10.1016/j.jmst.2020.05.014
Liu, 2012, Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation, Mater. Res. Bull., 47, 917, 10.1016/j.materresbull.2011.12.046
Yang, 2013, Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light, Appl. Phys. Lett., 102
Chiu, 2010, High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range, J. Phys. Chem. C, 114, 1947, 10.1021/jp905127t
Duan, 2020, Nano-porous carbon wrapped SiC nanowires with tunable dielectric properties for electromagnetic applications, Mater. Des., 192, 10.1016/j.matdes.2020.108738
Chen, 2011, P-type 3C-SiC nanowires and their optical and electrical transport properties, Chem. Commun. (J. Chem. Soc. Sect. D), 47, 6398, 10.1039/c1cc10863h
Wang, 2011, Large-scale synthesis of hydrophobic SiC/C nanocables with enhanced electrical properties, J. Phys. D Appl. Phys., 44, 10.1088/0022-3727/44/24/245404
Kim, 2020, Processing and properties of silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity, J. Eur. Ceram. Soc., 40, 2623, 10.1016/j.jeurceramsoc.2019.11.072
Valentın, 2013, A comprehensive study of thermoelectric and transport properties of β-silicon carbide nanowires, J. Appl. Phys., 114, 10.1063/1.4829924
Nakahira, 1992, Sintering behaviors and consolidation process for Al2O3/SiC nanocomposites, J. Ceram. Soc. Jpn., 100, 448, 10.2109/jcersj.100.448
Wang, 2016, Unique mechanical properties of nano-grained YAG transparent ceramics compared with coarse-grained partners, Mater. Des., 105, 9, 10.1016/j.matdes.2016.04.094
Wu, 2015, Recent progress in synthesis, properties and potential applications of SiC nanomaterials, Prog. Mater. Sci., 72, 1, 10.1016/j.pmatsci.2015.01.003
Fu, 2019, Organosilicon polymer-derived ceramics: An overview, J. Adv. Ceram., 8, 457, 10.1007/s40145-019-0335-3
Colombo, 2010, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics, J. Am. Ceram. Soc., 93, 1805, 10.1111/j.1551-2916.2010.03876.x
Yu, 2022, Single-source-precursor synthesis and phase evolution of NbC-SiC-C ceramic nanocomposites with core shell structured NbC@C and SiC@C nanoparticles, Adv. Powder Mater., 1
Saha, 2006, A model for the nanodomains in polymer-derived SiCO, J. Am. Ceram. Soc., 89, 2188, 10.1111/j.1551-2916.2006.00920.x
Lu, 2015, Densification behavior and microstructure evolution of hot-pressed SiC-SiBCN ceramics, Ceram. Int., 41, 8541, 10.1016/j.ceramint.2015.03.061
He, 2019, Fabrication of SiC ceramic architectures using stereolithography combined with precursor infiltration and pyrolysis, Ceram. Int., 45, 14006, 10.1016/j.ceramint.2019.04.100
Bechelany, 2015, Preparation of polymer-derived Si–B–C–N monoliths by spark plasma sintering technique, J. Eur. Ceram. Soc., 35, 1361, 10.1016/j.jeurceramsoc.2014.11.021
Chen, 2018, Potential-current characteristics in SiC/ZrB2 composite ceramics, J. Eur. Ceram. Soc., 38, 2477, 10.1016/j.jeurceramsoc.2018.01.020
Chen, 2018, Effect of sintering temperature on electrical properties of SiC/ZrB2 ceramics, J. Eur. Ceram. Soc., 38, 3083, 10.1016/j.jeurceramsoc.2018.03.039
Kobayashi, 2006, Temperature dependence of the electrical properties and Seebeck coefficient of AlN-SiC ceramics, J. Am. Ceram. Soc., 89, 1295, 10.1111/j.1551-2916.2005.00837.x
Ruh, 1982, Composition and properties of hot-pressed SiC-AlN solid solutions, J. Am. Ceram. Soc., 65, 260, 10.1111/j.1151-2916.1982.tb10429.x
Liang, 2016, Effect of sintering techniques on the microstructure of liquid-phase-sintered SiC ceramics, J. Eur. Ceram. Soc., 36, 1863, 10.1016/j.jeurceramsoc.2016.01.018
Shaffer, 1969, The SiC phase in the system SiC-B4C-C, Mater. Res. Bull., 4, 213, 10.1016/0025-5408(69)90058-0
Li, 1998, Hot isostatically pressed SiC-AlN powder mixtures: effect of milling on solid-solution formation and related properties, J. Am. Ceram. Soc., 81, 1445, 10.1111/j.1151-2916.1998.tb02502.x
Lubis, 1999, Microstructure-property relations of hot-pressed silicon carbide-aluminum nitride compositions at room and elevated temperatures, J. Am. Ceram. Soc., 82, 2481, 10.1111/j.1151-2916.1999.tb02107.x
Chen, 1997, High preformation SiC-AlN composites, J. Mater. Sci. Technol., 13, 342
Zhang, 2021, Low temperature densification mechanism and properties of Ta1-xHfxC solid solutions with decarbonization and phase transition of Cr3C2, J. Materiomics, 7, 672, 10.1016/j.jmat.2020.12.001
Zangvil, 1988, Phase relationships in the silicon carbide-aluminum nitride system, J. Am. Ceram. Soc., 71, 884, 10.1111/j.1151-2916.1988.tb07541.x
Nasiri, 2019, Microstructure and mechanical behavior of ternary phase ZrB2-SiC-AlN nanocomposite, Int. J. Refract. Met. H., 78, 186, 10.1016/j.ijrmhm.2018.09.009
Yu, 2020, Role of in-situ formed free carbon on electromagnetic absorption properties of polymer-derived SiC ceramics, J. Adv. Ceram., 9, 617, 10.1007/s40145-020-0401-x
Zhu, 2020, High infrared emissivity of SiC-AlN ceramics at room temperature, J. Eur. Ceram. Soc., 40, 3528, 10.1016/j.jeurceramsoc.2020.04.012
Hu, 2007, Core-shell structure from the solution-reprecipitation process in hot-pressed AlN-doped SiC ceramics, Acta Mater., 55, 5666, 10.1016/j.actamat.2007.06.037
Xia, 2021, Fabrication of (SiC-AlN)/ZrB2 composite with nano-micron hybrid microstructure via PCS-derived ceramics route, Materials, 14, 334, 10.3390/ma14020334
Lv, 2019, Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology, J. Eur. Ceram. Soc., 39, 3380, 10.1016/j.jeurceramsoc.2019.04.043
Feng, 2020, Effect of ZrB2 content on the densification, microstructure, and mechanical properties of ZrC-SiC ceramics, J. Eur. Ceram. Soc., 40, 220, 10.1016/j.jeurceramsoc.2019.09.052
Swanson, 1987, Crack-interface grain bridging as a fracture resistance mechanism in ceramics: I, experimental study on alumina, J. Am. Ceram. Soc., 70, 279, 10.1111/j.1151-2916.1987.tb04982.x
Kultayeva, 2020, Mechanical, thermal, and electrical properties of pressureless sintered SiC-AlN ceramics, Ceram. Int., 46, 19264, 10.1016/j.ceramint.2020.04.266
Balestrat, 2020, Additive-free low temperature sintering of amorphous Si–B–C powders derived from boron-modified polycarbosilanes: toward the design of SiC with tunable mechanical, electrical and thermal properties, J. Eur. Ceram. Soc., 40, 2604, 10.1016/j.jeurceramsoc.2019.12.037
Shah, 2002, Mechanical properties of a fully dense polymer derived ceramic made by a novel pressure casting process, Acta Mater., 50, 4093, 10.1016/S1359-6454(02)00206-9
Chen, 2014, Effects of polymer derived SiC interphase on the properties of C/ZrC composites, Mater. Des., 58, 102, 10.1016/j.matdes.2014.01.039
An, 2004, Carbon-nanotube-reinforced polymer-derived ceramic composites, Adv. Mater., 16, 10.1002/adma.200306241
Liu, 2018, Design of polymer-derived SiC for nuclear applications from the perspective of heterogeneous interfaces, J. Eur. Ceram. Soc., 38, 469, 10.1016/j.jeurceramsoc.2017.08.036
Wang, 2015, Microstructure and mechanical properties of SiCf/SiBCN ceramic matrix composites, J. Adv. Ceram., 4, 31, 10.1007/s40145-015-0128-2
Moraes, 2003, Processing, fracture toughness, and Vickers hardness of allylhydridopolycarbosilane-derived silicon carbide, J. Am. Ceram. Soc., 86, 342, 10.1111/j.1151-2916.2003.tb00020.x
Laadoua, 2020, Preparation of ZrC/SiC composites by using polymer-derived ceramics and spark plasma sintering, J. Eur. Ceram. Soc., 40, 1811, 10.1016/j.jeurceramsoc.2019.12.019
Razdan, 2005, Low temperature specific heat of glasses: A non-extensive approach, Phys. Lett., 341, 504, 10.1016/j.physleta.2005.04.027
Talwar, 1995, Thermal expansion coefficient of 3C-SiC, Appl. Phys. Lett., 67, 3301, 10.1063/1.115227
Yu, 2021, Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: The effect of pyrolytic carbon, J. Eur. Ceram. Soc., 41, 3823, 10.1016/j.jeurceramsoc.2021.01.048
Kim, 2015, Electrical and thermal properties of SiC-AlN ceramics without sintering additives, J. Eur. Ceram. Soc., 35, 2715, 10.1016/j.jeurceramsoc.2015.04.010
Ou, 2003, Electrical properties of SiC-AlN composites, Ceram. Eng. Sci. Proc., 24, 349, 10.1002/9780470294826.ch51
Feng, 2019, Investigation of electrical properties of pressureless sintered ZrB2-based ceramics, Ceram. Int., 45, 7717, 10.1016/j.ceramint.2019.01.073
Greuter, 1990, Electrical properties of grain boundaries in polycrystalline compound semiconductors, Semicond. Sci. Technol., 5, 111, 10.1088/0268-1242/5/2/001