Cross-Talk Problem on a Fluorescence Multi-Channel Microfluidic Chip System

Springer Science and Business Media LLC - Tập 7 - Trang 205-211 - 2005
Rudi Irawan1, Swee Chuan Tjin2, Paul Yager3, Dianwen Zhang1
1Biomedical Engineering Research Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
2Photonic Research Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
3Department of Bioengineering, University of Washington, Seattle, USA

Tóm tắt

Development of a compact fluorescence-based detection system for use in a micro-analytical system, such as a point-of-care diagnostic system, often requires a multi-channel microfluidic chip system. Since the materials used for microfluidic chips usually are transparent in the visible region and have a refractive indices higher than that of air or the surrounding environment, the fluorescence emission and scattered excitation light can propagate through the chip. We observed that such propagation can cause cross-talk between adjacent channels, and may become the major source of noise in the system and/or photobleach the fluorescent samples in the adjacent channels, particularly for the small distances between the channels found in microfluidic chips, usually in order of several μ m. We monitored this cross-talk using fluorescein as a fluorescent sample and Mylar sheeting as a microfluidic chip material. We then discuss how this cross-talk can be avoided using a simple, inexpensive and effective method.

Tài liệu tham khảo

A.E. Bruno, S. Barnard, M. Rouilly, A. Waldner, J. Berger, and M. Ehrat, Analytical Chemistry 69, 507 (1997). M.L. Chabinyc, D.T. Chiu, J.C. McDonald, and A.D. Stroock, Analytical Chemistry 73, 4491 (2002). J.Y. Cheng, C.W. Wei, K.H. Hsu, and T.H. Young, Sensors and Actuators B 99, 186 (2003). T. Chovan and A. Guttman, TRENDS in Biotechnology 20, 116 (2002). P. Grodzinski, R.H. Liu, B. Chen, J. Blackwell, Y. Liu, D. Rhine, T. Smekal, D. Ganser, C. Romero, H. Yu, T. Chan, and Kroutchinina, Biomedical Microdevices 3:4, 275 (2001). I. Gryczynski, J. Malicka, Z. Gryczynski, and J.R. Lakowicz, Analytical Biochemistry 324, 170 (2004). P.C. Hauser, C.L.C. Liang, and B. Muller, Measurement Science and Technology 6, 1081 (1995). J. Khandurina and A. Guttman, Journal of Chromatography 943, 159 (2002). H. Klank, J.P. Kutter, and Geschke, Lab on Chip 2, 242 (2002). L.J. Kricka, Clinica Chimica Acta 307, 219 (2001). J.R. Lakowics, Principles of Fluorescence Spectroscopy (Kluwer Academics, New York, 1999). I.R. Lauks, Accounts of Chemical Research 31, 317 (1998). F.S. Ligler and C.A. Rawe-Taitt CA (eds.), Optical Biosensor: Present and Future (Elsevier, Amsterdam, 2002). V. Linder, E. Verpoorte, W. Thormann, N.F. de Rooji, and H. Sigrist, Analytical Chemistry 73, 4181 (2001). M.P. Noire and B. Dureault, Sensors and Actuators B 29, 386 (1996). K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, and T. Kitamori, Advanced Drug Delivery Reviews 55, 379 (2003). T.H. Schulte, R.L. Bardell, and B.H. Weigl, Clinica Chimica Acta 321, 1 (2002). F. Vinet, P. Chaton, and Y. Fouillet, Microelectronic Engineering 61/62, 41 (2002). R. Weersink, M.S. Patterson, K. Diamond, S. Silver, and N. Padgett, Applied Optics 40, 6389 (2001). B.H. Weigl, R. Bardell, T. Schulte, F. Battrell, and J. Hayenga, Biomedical Microdevices 3:4, 267 (2001). B.H. Weigl, R.L. Bardell, and C.R Cabrera, Advanced Drug Delivery Reviews 55, 349 (2003).