Cross-Modality Imaging of Murine Tumor Vasculature—a Feasibility Study
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lanitis E, Irving M, Coukos G (2015) Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol 33:55–63
Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307
Niccoli Asabella A, Di Palo A, Altini C, Ferrari C, Rubini G (2017) Multimodality imaging in tumor angiogenesis: present status and perspectives. Int J Mol Sci 18
Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603
Yankeelov TE, Abramson RG, Quarles CC (2014) Quantitative multimodality imaging in cancer research and therapy. Nat Rev Clin Oncol 11:670–680
Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121
Penet MF, Krishnamachary B, Chen Z, Jin J, Bhujwalla ZM (2014) Molecular imaging of the tumor microenvironment for precision medicine and theranostics. Adv Cancer Res 124:235–256
Cebulla J, Kim E, Rhie K, Zhang J, Pathak AP (2014) Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model. Angiogenesis 17:695–709
Keuenhof et al. (2021) Multimodality imaging beyond CLEM: Showcases of combined in-vivo preclinical imaging and ex-vivo microscopy to detect murine mural vascular lesions, MCB, Vol 162. https://doi.org/10.1016/bs.mcb.2020.10.002
Müller BL L, Dominietto M, Rudin M, et al. (2008) High-resolution tomographic imaging of microvessels. Proc of SPIE
Walter A, Paul-Gilloteaux P, Plochberger B, et al. (2020) Correlated multimodal imaging in life sciences: expanding the biomedical horizon. Front Phys 8
Meeth K, Wang JX, Micevic G, et al (2016) The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Research 29:590–597. https://doi.org/10.1111/pcmr.12498
Chen Z, Rank E, Meiburger KM, Sinz C, Hodul A, Zhang E, Hoover E, Minneman M, Ensher J, Beard PC, Kittler H, Leitgeb RA, Drexler W, Liu M (2017) Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging, Scientific Reports 7;17975
Monsky WL, Carreira CM, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK (2002) Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 8:1008–1013
Mohun TJ, Weninger WJ (2012) Embedding embryos for high-resolution episcopic microscopy (HREM). Cold Spring Harb Protoc 2012:678–680
Weninger WJ, Geyer SH, Mohun TJ, Rasskin-Gutman D, Matsui T, Ribeiro I, Costa LF, Izpisúa-Belmonte JC, Müller GB (2006) High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology. Anat Embryol (Berl) 211:213–221
Mohun TJ, Weninger WJ (2012) Generation of volume data by episcopic three-dimensional imaging of embryos. Cold Spring Harb Protoc 2012:681–682
Novikov AA, Major D, Wimmer M, Sluiter G, Buhler K (2017) Automated Anatomy-Based Tracking of Systemic Arteries in Arbitrary Field-of-View CTA Scans. IEEE Trans Med Imaging 36:1359–1371
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:529
ImageJ2/FIJI (https://imagej.net/Fiji
Askeland C, Solberg OV, Bakeng JB et al (2016) CustusX: an open-source research platform for image-guided therapy. Int J Comput Assist Radiol Surg 11:505–519
CustusX (https://www.custusx.org/)
SlicerIGT (http://www.slicerigt.org)
Ungi T, Lasso A, Fichtinger G (2016 Oct) Open-source platforms for navigated image-guided interventions. Med Image Anal. 33:181–186. https://doi.org/10.1016/j.media.2016.06.011
3D Slicer (https://www.slicer.org/)
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341
Obenauf A, Zou Y, Ji A et al (2015) Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 520:368–372
Yankeelov TE, Arlinghaus LR, Li X, Gore JC (2011) The role of magnetic resonance imaging biomarkers in clinical trials of treatment response in cancer. Semin Oncol 38:16–25
The Vascular Modeling Toolkit. www.vmtk.org
Tomviz www.tomviz.org.
Walter et al. (2021) Correlative multimodal imaging: Building a community, MCB, Vol 162. https://doi.org/10.1016/bs.mcb.2020.12.010
Moccia S, De Momi E, El Hadji S, and Mattos LS (2018) “Blood vessel segmentation algorithms - Review of methods, datasets and evaluation metrics,” Comput Methods Programs Biomed 158;71–91
Walter et al. (2010) Visualization of image data from cells to organisms. Nature Methods 7:S26‐S41. https://doi.org/10.1038/nmeth.1431
Lawonn K, Smit NN, Bühler K, and Preim B (2018) “A Survey on Multimodal Medical Data Visualization.,” CGF, 2018
Sharma DBAVEBLJRCPM (2020) Deep learning techniques for biomedical and health informatics. Academic Press
Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113S–128S